Alexander Strang

Kruskal Instructor 

The University of Chicago, Department of Statistics

George Herbert Jones Laboratory 309, 5747 South Ellis Ave,

Chicago, IL, 60637

Phone: (773)-702-5043 
Email: alexstrang@uchicago.edu



Alex Strang is a postdoctoral instructor in computational and applied math at the University of Chicago. He received his PhD in applied math from Case Western Reserve University in 2020.

Alex studies the structures of networks that arise in a variety of disciplines including biophysics, ecology, neuroscience, and in competitive systems. In each field, he seeks to understand the interplay between structure and dynamics. He is particularly interested in random walks on networks associated with biophysical processes occurring at the molecular scale. He also works on networks that represent competing agents who evolve according to a training protocol. He draws on tools from discrete topology, non-equilibrium thermodynamics, and functional form game theory to study the interplay of structure and dynamics in these systems. 


He also works on Bayesian inference and sparsity promotion via hierarchical hyperpriors. His work here has focused on coordinate ascent methods for MAP estimation, the sensitivity of estimators (and the effective regularizer) to changes in hyperparameters, and variational methods for estimating confidence intervals.

Latest Publication

The Network HHD: Quantifying Cyclic Competition in Trait Performance Models of Tournaments

How cyclic is competition if competitor performance is determined by their attributes, which are sampled at random?


We show that the structure of tournament graphs can be decomposed into transitive and cyclic components, where the transitive component is related to an opponent independent measure of skill, while the cyclic component captures rock-paper-scissor like interactions. The expected sizes of the components can then be computed from the number of competitors, number of pairs of competitors who compete (edges), variance in the performance on individual edges, and the correlation in performance on edges sharing an endpoint. We show that the correlation coefficient is related to how predictable your performance is when your adversary is unknown, and directly tunes the degree of cyclicity. The more correlated, the less cyclic. 


Alexander Strang

George Herbert Jones Laboratory 309, 5747 South Ellis Ave,

Chicago, Illinois, 60637

  • 519-5190122_university-of-chicago-transparent-png-university-of-chicago
  • 507-5077250_icon-google-scholar-logo-hd-png-download
  • 1024px-ORCID_iD_edited
  • LinkedIn

Thanks for submitting!