
-310-LinearAlgebra -eI
Esday - 23

· Info:
· Instructor: AlexStrang, destrungguchicago.edu

· Office: Jones 309

· TH: Hwanwoo (Josh) Kim, hukim euchicago.edu

· Office Hours: Wednesdays, 9:00 - 10:30 am, Jones 304

· Lob Sessions:Fridays, 3:00-5:00pm, Jones 226

· Materials: Numerical Linear Algebra by Trefether and Bon

· Assignments and projects in Jupyter notebook (install anaconda locally)

· All info, announcements, calendar, etc. on conves

·

Logistic
part I and lectures 12-13 of port It

· Complete course poll
· Install anaconda and make sure you can launch Jupyter notebook

·

Loosto
tonumerical analysis/scientific computing

· Problem type, accuracy/stability, costefficiency
· floating point arithmetic

· Stability I accuracy B stability
· Conditioning
· Big O notation

· What is numerical analysis?

for· the study of algorithms mmons problems

computation focus on scientific problems,
numeries

statistical/data science problems
· Computation: is discrete and finite that involve continuous variables



· the tension between continuous problems I discrete methods

will raise the key issues of the feild

· accuracy · discretization

·

scope of what can be approximation rounding
· costefficiency · error propagation
·

convergence · stability B robustness

· Key mord:

· There are often many mathematically equivalent ways to

solve a problem, that are numerically completely different.

· How? how you solve a problem matters.

· Design Principles for Numerical Analysis: "Axes of analysis"

1. What are you solving?

2. Whatisthe general problem class?

b. are there specific features of the problem

I can exploit?

(i) symmetry (iii) sparsity

(ii) convexity (iv) prior knowledge or

constraints on your soln's

2. How accurately? real problems have errors:

(i) errors in model, problem (ii) error in inputs that specify a problem instance I notreis americal
(iii) approximation errors from (iv) computational/rounding errors

choice of method numerical analysis

terrors from discretization) I
· Achieve a desired accuracy. (depends on controlling ally sources)

· Numerically, aim for stability - small relative errors in output, given small errors in input

3. How quickly? What isyour computational budget?

(i) memory/storage (ii) I ofoperations needed (iii) clocktime/woll time

(iv) # of computational nodes, cost of the cluster, GPU, externalities



· Ex: given Hekmen, be D" find x24" sit. Arib.

then you'd call xAll.

· Q: What does All actually do in a real comp. long.
· does it calculateA"= A"b=x? ** bosically never

·

approx. A"and do the same thing?
· reduce Aor factorit, then solve via the factors. Idirectmethods· LUG Gaussion elimination

· QR E) Gram-Schmidt

· iterative methods based on optimization

· Why linear algebra?

b. mostmultivariate problems are hard

d. most problems are multivariate

IC. I unless they are linear (2 linear)

(bi linearity allows decomposition into parts Consequence:

sequential reduction process, convert on n-1 problem if the basic operations done in a comp.

into a sequence of , 10 problems) system are +, -,x, I

do and they are useful for approximation, appear then the basic computation steps used in

as intermediate computational steps of other algorithms are linear algebroic.

algorithms, and are themselves ubiquituous

· The basics:

· Number System Floating Point #'s.

· problem: computers can't represent osly many It's

so they are restricted to a finite subset

· subset me use are the floating point #'s

· Floating. It'sare the comp, andog to scientific notation



· Lef: a set of floating point#'sF is defined by:
1. a base, 1, integer valued, "I Sinpractice B =2)

2. a precision, to integer valued, 1 (in practice +=27, or +=53)

13.0 scale, E, integer valued, I fix the smallest 3 largest
It'sin F, in practice the smallest B largest it'sinF

one 10-308, 10308)

then I is all I's + sit.

x = 1)) Be for melt, it-1], eet-E, Ej

lideo; is to break the real line into powers of B, then separate those

intervals evenly using segments spaced according to the precision.

do this between two values controlled by E, E.)

· Ex: Biz, t=3, E = 2

interval associated w/ e=l

semeticmine............
.

=8
2

I I ↑ ↑ ↑

Bis -1 Bo B 132
I I

interval associated w/e=2



Thursday - 03/23 - Computational Basics

·

Logisticsse intro poll
· Read Part I (Lin. Alg. review) B lectures 12-15

· Install anaconda B open Jupyter notebook

Goals:

· Measuring Computational Cost B "bigO"notation
· Accuracy, Stability & Conditioning

· Floating Point #'sand machine E

· Stability
· Conditioning

· Norms

· Vector norms

· Matrix norms

Measuring Computational Cost

·

numerics: it of flops - floating pointoperations (t, -, x, )required by on

algorithm

memory usage or storage, I of floating point values stored

· oftenstudy the # of flops required in an asymptotic sense

· how does the it of operations required scale my problem size?

· "bigO"notation...

·Ex: solve Ax=b for AGD, use a direct method, OIn")

means. It operations required (n) bounded from above by

2n3, C30 for sufficiently large n

· Lef; a functionf(t), tEIR is OlgHt)) if I CYO, CEIR s.t.

If(t) 1 = ( g(t), g(t)>0, g(t) tIR

(more generally, often meant in a limiting sense, either V + IT, or V+-T)



· thisnotion, measure cost of an algorithm via a bound on its scaling

in problem size => complexity

· problems arising from lin. olg. (those that admit direct methods)
run in "polynomial time"

· P is the class of polynomial time problems if all problems in

P admit on algorithm that produces soln'susing 0(p(n)) steps

where p(n) isa polynomial of finite degree, isproblem size

· iterative methods are often derived from optimization

usually thinking in terms of
convergence analysis

fix occuracy -> complexity

·

NP isthe classofnondeterminisapolynomialtimeproblemanangin
soln's 3 E: combinatorial optimization problemswhose state space grows exponentially
· but any soln can be verified in polynomial time in problem size

·usually think P= tractable at large scale (may be expensivel
~P:intractable at large scale

slop=3,"cubic" slope=1,"quadratic time"
N - - i slopes, "linew time algorithm"
* polynomial time algorithms

- E have linear cost in log

- log plot, slope=degree
j ·
- budget =mox # of operations

#-·...-----------------
it

S

-

- "fast algorithms"are O(n), O(nen(n)), etc.

-lveable log(n!MdX



Accuracy, Stability & Conditioning

· Floating. It's the comp, andog to scientific notation

· problem: computers can't represent osly many It's

so they are restricted to a finite subset

· subset me use are the floating point #'s

· Lef: a set of floating point#'sF is defined by:
1. a base, 1, integer valued, "I Sinpractice B =2)

2. a precision, to integer valued, 1 (in practice +=27, or +=53)

13.0 scale, E, integer valued, I fix the smallest 3 largest
It'sin F, in practice the smallest B largest it'sinF

one 10-308, 10308)

then F is all I's + sit.

x = 1)) Be for melt, it-1], eet-E, Ej

lideo; is to break the real line into powers of B, then separate those

intervals evenly using segments spaced according to the precision.

do this between two values controlled by E, E.)

· Ex: Biz, t=3, E = 2

interval associated w/ e=l

semmetricmine............S S

.

=8 -
2

I I ↑ ↑ ↑

Bis -1 Bo B 15
interval associated w/e=2

· check: if met then "so (H)B =pe-1- lower endpoint of the e interval

if m =it- 1 then :1-"+ so (+) BY=B*-(+)P 5lost # before e

speeing in eth interval: (*)*-(1)=(+) is
so, in et interval, divide into evenly spaced segments of size (i)B"



interval associated w/ e=l

symmetric,on reflectionsent.........
-

2

↑ ↑ ↑iti B 132
I I

interval associated w/e=2

· What isthe precision of calculations using F?

· Lef: machine epsilon, Em=2Bt( the
gap between I, and the nextlargest

I in F)

· set
a lower limit on tolerance of

any
calculation (in a relative sense)

· IEEEdouble precision then Emi I'=1.1x 1016

me; if We (min(F), mox(F)) then I x'eF s.t.

Ix - x

1x
Em () (x-x'? Em/x

and, if flR-F rounding to the nearest # in F, then

7370 s.1. 12122m and f((x) =x (1 +3)

· Axiom of floating, arithmetic, assume that our computers implement a base

set of operations (t,, X, i) through floatingpointequivalents (8,8, ...)
34 *3 such that IE30 or 1912Em and

**y =(xxy)) +E)

·
can guarantee accuracy of the basic operations up

to Em



·Accuracy & Stability of problems: problem instance, inputs x, a mapping, function of which

returns desired outputs, i.e. soln's

· let I denote the approximate soln'sproduced by a

computational routine
space of inputs
↓

·

given fix->Y, (x,Y one vector spaces) then?
I

outputs

11f(x) - f(x) 11
· Def: the relative accuracy of I of : 11 f(x) /1

·from the numerical perspective, we design I, but don't have

control over errors in the inputs -> instead design for stability
i.e. relatively small errors in the output provided small

errors in the input

· Stability: given I, I is able if VxEx, sit. IIExII/=ocer)

then:

11f(x) - f(E)11/If(E)11 =0)3m)

"nearly the right answer to nearly the right problem
"

· Bockward Stability: givent, I is backward stable, if V xeX, I = s.t.

I(x) =f(x) where IIE -x/1X11 =0(3m)

"exactly the right answer to nearly the right problem"

· Adroning: whether the degree to which stability is achievable depends

on the problem we are trying to solve ... sensiting of outputs f(x)

to inputs *

· the scaling factor "hidden"in bigOCE) statements

· the # digits of accuracy lost by applying f, (given
Em=10", only have 16 digits to lose)



· If fo inputs -> outputs (instance -> soln), sensitivity of file to perturbations

in xwill bound the stability of best possible I

· fre I· if I ishighly sensitive to inputs -> I cannot be stable "ill conditioned"
·

↓
"Trnitin ↑ &

Close accuracy)

fees" if I is not - I-I could retanmostwell-conditionedin

·Boundthe sensitivity off from above w/ regularity or smoothness

conditions on fi

· Ex: f is lipschitz continous X W/ constant K.

then Y x, y G X

11f() -fap1 =KIIx-yll -> lIfCf*IK

So, if IIX-X11=0(3m) => 11f(x)-f(I)11=0CK (m)

· Bounds on sensitivity off, from below, condition 4, R

· well-cond, problems have a small

· ill-cond, problems have a large

· Def: given a problem instance (f,) an absolute condition

#, ECf,x) and a relative condition number (elf,1)

11f(x +(x) - f(x)))Esf.) :die 11 S x11
-

Kimsson? Here
Elfe - I cs()

· Alf,x) worst case loss in relative accuracy of (f,x)



·Ex: let f(x) =x, - xy problem: compute the difference in 2 inputs)

then (see Trefather), 1(f,x) =2
maxdIX, I, 1213

14 - xz|

·: subtraction of two large, similar It'sisunstable

require high relative precision in input to retain precision in output

important since rounding errors in fl. arithmetic are relative

subtraction is unstable when I It's nearly concel)

· An example of different mathematically equivalent statements that are

numerically distinct.

3.2 =1,5 -7=1,11 -10 = 1 -> (3 +x) -(z+x) =1

but ((f,x) = 2.(3 + x) =0().(3 +x) - (2 +x) =1 X x

but get'sless stable as a grows.



week?Transformation
te

·

Logistics;
posted, due nextTuesday (by midnight, on conves

· lab sessions and office hours start thisweek

· Read Part I, start Part II (lectures 6-8)

· Goals:

· Norms

·Vector norms

· Operator norms
· Conditioning revisited

· Linear Transformations

·Vector spaces and linear operations
· Finite DimensionalLinear Transformations

· Spectral radius B condition #'s

· Review: citoning

·

a problem is really a mapping of from inputs x -> outputsf(x)

computationally approximate f(x) w/ f(x)

· Def: given a problem instance (f, x) and a norm, II.Il

where fix -> Y, X, Y are vector spaces

on theconditionnumber (f,) and relative condition # R(f,x)

-

Il Sallworst see S
Elf,)-di 11f(x+3x) - f(x)))) Itiemplification
k(f,x) =ins) ifcases

- fall I11f(x)/1

· Ex: let f(x) =x, - xz for xeIB, 11 x 1) =mex31x,13

what is (f,x), Elf, 1)?



E(f,x) =Iis ofcesIlyhiwhat
senses

where J(x) =ii (f,x) =2ifitis fix:(i.e
f(x): IR -> 1R,f(x) =x, - , (x) =(1, - 15 I

then
using

11x11=mox31513, then 1111,1311,"111+1-11
: 1 + 1 =2

11f(x +3x) - f(x)))
(f,x):Y 11f(x)/) -Sis)" fast-festin

-(f,x)=2 metres
· computing a difference isill-conditioned if maxE(. Ie13 Ix-ret

· Ex: compute (x+1) - x:1 =) 1 = 0 = 1

2 - 1 =1 I mathematically equivalent
11-10 =1 but numerically distinct

k(1,1) =[mex 5(1), 13:ca

· Norms: measuring size, how big is Xex?

· Def: given a rector space, a norm 1.11:X + IR, 111 assigns a real #

to
any xeX such that

1. 1120 and 1x1= 0 iff x =0

2.10x1l= 101 1x1

3. triangle inequality (styll11xy-Hyll * xyEX



· Ex: given X:
G" then the up norms are defined:

Help =(I.P)" ="p-norm", P20

(i) if p=0, 1x10 =Aofentries of x to- cordinality of the support of x

(ii) p=l, IX1, =lilz "taxicab, manhattan distance"

(iii) p
= 2, Kln= (E15Endlidean distance

(iv) limp-cs, 1Xs =

mex 3/x;13

· tovisualize the norms, often use the "unit ball"associated on those norms

· Def:the unit ball is Exs.t. 1x1l=13

- Y

A

-

A

↑
os pA

A

-
A

S > S " > S > S ... S >

W W W W W

p
=1 p(2 p

=2 > 2 p ->ex

· Norm Equivalency/Consistency: two norms 11.Ile and I.lly are equivalent if

7c, 2E1Rt,c?) s.t.

clxly IellyCIle Yx.

· Ex: all p-norms m/p21 are equivalent... let'sconsider III, lely, I

for EIR

-"..."" xualreI -I



generically: ifE4", then Up B lg w/12P?9

IXI, Kellp mSpellg

So: Helly! III, e Ies

lixas? IxIz? m 1xlo 3 IlalosIIxly I9x1, em Ixly mleles
Ielles III, =m lxlc

· further norm inequalities ... follow from Holder'sinequality of Conchy-Schwartz
Jensen'sinequality when convex

· Matrix/Operator Norms: two perspectives

1. "Entrymise"; treats AEM as a list of mn it's... views A as some object
· Ex: Frobenius norm IAll,-(1)"

7
· Def: given CY, GY vectorspaces w/ norms 11. Ile, 11.Ilp the

citation to estate

may
induced operator norm of AGCM is

P.Si== EIIAXI
*eC

· size of maximum output (measured m/II.1(b) given

input x s.f. 1xly:1
· then: HAx=I1Allinl*. nontrivial to compute in most cases

· Lef: induced p-norm of Ais
SP 5/IAx1Ip3
11x1p= 1

· maximum amplification" under multiplication byte form.

~

-!
I



· operator norms inherit the norm equivalency of the

vector norms that induce them

· allows comparison/inequalities relating operator norms

· useful since some induced p-norms can be computed entrywise...

↓
Ith column of A

· Ex: IIAll, -, 5210,13 =lies 1, 3: "max col. sum"

IAlle-meSe9,13-Em511-a.-11,3="max row sum"

· Why?
·roof: I All, = -1511Ax1, 3

/Ax1, =11,11testine: NAMMis a neighted average

of the I-norm of the cols of A...

mot3l11,3 wr equalityif anlife
for M maximizing 11911, over all,

IXis indicator vector for col of maximal

sum)

· lAlle,EHIAxI3=... try and prove thisyourself.

· Equency: given
At Chan, AllAlle? lAllo, in All, lAllz IIA,Il

and, by Holder:

"Allz =IAllo
· useful since All is hard to compute, but the most natural

while IIAl1, B 1Allo are easy to compute.

· Ex: recall f(x)= -, - x, Efix) =S es [11f(x48f(x)
e3
↓ Jacobian

if I is continuously differentiable, f(x+ (x) =f(x) + 5(x) 6x +0)3x) (local Toylor series(
for smooth enough norms

so sin(Ilfris-fes1I]=s 113x)55+8(631)b]=13/l
11[x1l?S

we'dused II. Ilo-b =c so wanted 113()/1g=11(1, -1311g=1 +1 =2

if II: 110 =b=1... 115()11, =max31, 13=1. I norm

equin I Id

If Hillarbin on his, mil so - 115(S1, 23, 1 =113()11, -5, 113c)11or erasimension



· Ex: Conditioning of division:f(x) =E's, then 5K)= (v2, - x2)

so ,(x) =115(x) (p =,,((x,) + (x2) I k,(x) =(ix)e ne

- mox IX, Ise
Ix= maxE/x, 1, 23, IIf(xsIIa

=1 +max,

so Eok)=1+ moxt3... division is ill-conditioned if (x,123 Kel or Icks (Xil

sinputs of different scales)

· numerical moral: only trust division of #'swhose relative orders of magnitude

are not overly different...

expect to lose as many digits of accuracy as the relative

orders of magnitudes of the inputs

i.e. avoid dividing very large #'sby very small it's



Ihursday - 2023.

·Logistics.
·HW I posted, due next Tuesday

· First lab session on Friday, 3100 - 5:00 pm, Jones 226

· Resources:reading on discretization B differencing posted

· Goals:
· Linear Transformations:

· Vector Spaces B Transforms

· Discretization example: differencing B convolution

· MatrixProducts (performing linear transforms):

· Gost/Complexity

· Spectral Perspective
· Conditioning

·Linear Transformations:

· Def: a vector space I is a setof objects veV called rectors

equipped w/ vector addition, v + W B scolor multiplication, or

Cover a field) that is closed under linear combination.

given v,w-V, scolors &,B: Ov+BWEX
a
linear combination

· Lefi on operation/transform T:V -> W (that maps between vector

spoces VBW) is linear if In,veV, c, B: N

Y
isn

W

T(ax + 3v) =0 T(u) + BT(v) It
T

· Ex: 1.X =D=ell lists of a complexI's, AEDM*

then let TK) =Axfor xe C"

T: 4" -aI
and: T(on + 3v) =A(on + pr) =dAn + pAv =0 T(x) + pT()



· Ect: All linear transforms T:X-Y between finite dimensional vectorspaces

can be expressed T(x) =Ax for some matrixACGM

· Consequence: approximate line transformations numerically via multiplication

~/ a matrix A.

· view motrices /matrix products as discretized transforms

· Let'slookat some other important/interesting vector spaces B associated transforms...

· Ex: the set of all men matrices, Gm* is a vectorspace

given ACGWT all transforms T(A): PAC forBECPY, CEG*9

isa linear transformation...

Check:((0A +3M)c =0AC +BMC

T(0A +BM) =0 TA) + B T(M). V

· Ex:given-t=D, pEdll polynomials of a single variable of degree?m3

then pepim) if I coefficients (p) s.t. p(x) =E9x
· is thisa vector space I m? - p() +pq(x) =polynomial of deg. m/

· what is it'sdimension? m+1

·

is the following lineor? Check closed under (in. comb.

T[p](x) =q(x)p(x) for gtp(n)
· What isthe space of outputs? polynomials of degree man, p(rth)

· suppose q(x) = x+1. What is the matriximplementation of the transform?

u m+ 1

· T2p]=(x+1)p(x10) =E(xr) -,x =20x +E8x
*

=.x
J=0

-
P(x10) degree mal polynomial

-Po ·do

SB,(0)
I
B if

(2)2mids,
the output B, is a line

Bm+ 1 combof the os

7a matrixA s.4. B: Ad. A is (m+2)x(m+1)

A =(iii) anotice:itis almostentirely o...

A is sparse



· Ex: given the domain =10.15the set ofall continuously differentiable, boundable

functions fi-l -> IR is a vector space and:

1. T(f):If is a linear transform, de(of + (g) =dff +359

2. T1) =If is a linear transform,...

3. T1 =E(E)'f is a linear transform, ...
· can me approximate these w/ a finite dimensional discretization?

·what errors do discretization introduce?

·let'stry to approximate , f:(0,1]-IR, we'll assume

that I is periodic m/ period (

· let's discretize the domain 1: [0,17

Xo X l

C I ·

. S

8 I,
x =(x

3x3,0,ex=I

· replace functions over 1 -> samples:Ef,3,..f,: f(x) henact sampling of de
samples: 3f;3,0,fi =Gf(x))y

approx. Itisa Plant
·how tobuild Icons? Stf(c):in x-fis-ecentl

mod(n):- I=je(f(x - f,) =b(x)f..
*

Xo

8 AX I

C I ② S

↑(ex)= ] siein
· Ex: given CR, compact, the set of boundable functions fir iR"Error analysis: f(xwex)-f(as -enf(x)

is a vectorspace and, given K: -lx--> 1R, Ik(x,y)/<00 a.e.

using Taylor series:f(y +ex) =f(x)) +(yf(x))ex
T(f)=/k(x,y) fly) by is a linear transform

i
+ I(j2f(x)) ax

egral transform + O(1x3)

Every general, includes all convolutions, Fourier B Laplace transforms, etc.) !x(f(x+1x) - f(y)) =ix)f((y)1x +I)f)er
oh.... and in limits all differential is integral operations. + 0(sx))

· the functional analog to matrixvector products... =f(x) +j(5)f(z)1x +0(ax).



· Matrix Products.

1 inner products productof two vectors 2, VEW (notation: " or 1.2 or airl

L0,07: WxV - A sit.

1. bilinear: (x +V,w) =(n,w) +(V,w)

and (2, V +W) =(n, v3 +(n,w>

2. (0n,v) =((u,v) =(u,dv>

3. commutative:(2,v) =(v,n)

4. CV, v> 30 and =0 iff v =0 ----inducesanorie
↓- conjugate transpose

if I is finite dimensional then (v,u): x*Mu

for v,neC", ME D* p.d., and = (5, v2,... Unt

usually:

Xv,2) =v
+x =,,,4, I rowncol. (vi, y, ... injene

sum of elementwise product

2.Matrix-vector product: given beamin, x- D"then b: Ax where

(i) Elementwise:b =(H1], =Ex
(ii) Row-wise: View A as a collection of rows, iA:eeerrownedestros

As as a series of inner products:

bi =14x] =)- it row of I-).x

(iii) column-wise: view A as a collection of columns, #A=(py...desotereace"
As as a linear combof the col'sof A

As,
Icoeff, of thiscombination

· Ex:A=);j.jnFte
specify coefficientinto

the



3. Matrix-matrix products: given AGDMY, BE CYP then C=ABEGMP where!

(i) Element-wise: view A as a collection of rows, I of col's

then: with column of

C
=[APJ, -)- throw of 1-).b =E,Pinbes

Ioy"t:.*
(ii) Column-wise:A B = A(6....3]= [Ab..by civil rowwise..

· implies the outer product:ve D", vECM then ne Dm* cool.), ve D'crow)

nr+- uty....Entertai
(iv) Can also compute Ab via a sum of outerproducts...

Ab=E, (nth col. of Al fthrow of b

· Computational Cost /Complexity of MatrixProducts: how expensive are these operations?

1. inner products of x,yt(" -> x4y =2,X,y, -rde52n-=0)

2. matrix-vector:AEGM, x6D" -> Ax =m inner prodof vectors of size

=0(mn)

3. matrix-matrix:ACR**, BEGYP-> At=mp inner prod....

=0(mnp)

· for es: At G1, 8eDY-> comp. AB, cost O(n3)

matrix-matrix mult, has a cubic cost (in flops)

&optimizeor foster methods:

schoolbook:O(n), Stressen:O(n2207), Coppersmith - Winogrod O(n?.3)



· Con also speed computation by exploiting structurein our matrices:

1 if Ais sperse (# of nonzero entries ofA =1supp(A)) mn)

use sparse operations, cost Ax =0(1supp(A)K

· let supp(A):Eij s.t. dij F03

·then As only requires I mult. B I addition per diy f0

so cost using sporse operations is 0((supp(A)))
·D(ex) has Isuppl= zn, size n? cost of D(xxf

is (n?) wont exploitingsparsity, O(n) w/ sparsity.

2. symmetries of A to speed comp.

· Ex: if Aimplements a PFT on a samples

use multiscale symof A to perform Ax=O(nh(a))
· other examples: fast Hodomord, fast Hankel (constant down diagonals)

· Stability & Conditioning of Linear Transforms: usually requires a different perspective on T() =Ax...

· Spectral Perspective:
· matrices Acan be factured into"simpler"factors?A=F, Fz... Fe= IF,
where the factors I, each perform a "simple"transform.

· Key factorizations:

1 if At Dr is diagonalizable (In lin. ind vectors ve3v,3,, s.f. Av, = y, Y
for some scalar 1, t()

then:A=V11X-

where: V=/in-in], 1=)"=digdel
-

eigenvectors eigenvalues

2. Singular Value Decomp (SVD): given any AGDmen

then:A=UGV*
where? ?

?

!

-it setsofitin



T -

· Eigenvalue Example: if AED on linearly independent eigenvectors v
then F xe G Iye D s.t. x=, YY:Vy =y=

Wx
in eigenbosis, Av1, just scales by X's.
e

. Ax=VAVX =V- y =(1y),Y =E,(x,y)Y

· arose, alijst
--in so

ti
I

-and V= A =V
-
1v
-

V
=I I, if exists so

example point? x =121

i-
in

-
~-Itaange

to

eigenbsis
~change beck

tocononical basis

- I :ititsa-

-
A -t

!
Istretch, scale, -Stretch
reflect)



· VD: A=ULW*(where U,V have Inormalized columns, I diagonal, real, nonnegative, nonincreasing (

takes one orthonormal basis, V =3n,re,...3, and maps

it to an orthogonal basis, U2=36,4,6242, ... 6 Un3
· can help to visualize the transform of the unit ball

↓"Sunit ball:Sell x sit. IxIl=13

"re
et

1. rotation, but rotation doesn'tchange
vit, the unit ball Signore vi

....
.

..
2. multiply by 5, scale the directions

[i] by 6, 19] by 62
turns the unit ball into an ellipse

with axes lengths equal to the singular
2 t,stretch volues

:
3. rotation, this one matters by the

ellipse is not rotationally

· need:Ve,=U[!]=2,

vez =U (9]= 22
U lyrotate/reflect that means that the columns

of U, n, 22, ... are the directions

e of the principal axes of the ellipse.

orthogonal basis for
orthonormal basis for IR" range (A)? IBM I

· so. A sends right singular rectors Ev,3, to scaled left singular vectors 36, 4,3,=1

· what aboutAT? A =USUT

AT=v3YrY so V plays the role of U for A
T

-

exchange right B left singular vectors, singular values unchanged
I

· the singular vectors v, ve,..-orientthe ellipse associated with A

· Al sends 34,32 to 36,4,3,=1



Wie3newTranOrthogaizaoe

· Logistics.
· HWI duetonight

x
except lecture 11

· Reading: finish Chapter II, lecture 16

· HW I ossigned, due next Tuesday
· Project I will post Wednesday

· Gals:

· Linear Transforms:

· The spectral perspective
· Conditioning B Stability

· Linear Transforms continued...

· Spectral Perspective:
· matrices Acan be factured into"simpler"factors?A=F, Fz... Fe= IF,
where the factors I, each perform a "simple"transform.

· Key factorizations:

1 if At Dr is diagonalizable (In lin. ind vectors ve3v,3,, s.f. Av, = y, Y,
for some scalar 1, t()

then:A=V11X-

where: V=/in-in], 1=)"=digdel
-

eigenvectors eigenvalues

2. Singular Value Decomp (SVD): given any AGDmen

then:A=UGV*
relation to eigenvalues/vectors

where: W is mem B has I, normalized col's
· 6,=x, (A*A) = 1, CAAY) (uptorank)

↓is new B00. I · y,: eigenvectors of AA*

& is diagonal, 6, EIR, 6,262632...Grenkins . v,
=eigennecters of A*A.

(men)

-it setsofitin



T -

· Eigenvalue Example: if AED on linearly independent eigenvectors v
then F xe G Iye D s.t. x=, YY:Vy =y=

Wx
in eigenbosis, Av1, just scales by X's.
e

. Ax=VAVX =V- y =(1y),Y =E,(x,y)Y

· arose. l ij).***: iti
I

- A =V
-
1v
-

V
=I I, if exists so

example point? x =121

"....

iS
in

-
~-Itaange

to

eigenbsis
~change beck

tocononical basis

- I :
1-it isitsa-

-
A -t

!
-Stretch

/



· VD: A=ULW*(where U,V have Inormalized columns, I diagonal, real, nonnegative, nonincreasing (

takes one orthonormal basis, V =3n,re,...3, and maps

it to an orthogonal basis, U2=36,4,6242, ... 6 Un3
· can help to visualize the transform of the unit ball

jatunit
ball:Sallest. Ite

1. rotation, but rotation doesn'tchange
the unit ball Signore vi

2. multiply by 5, scale the directions

.....
.. [i] by 6, 19] by 62

turns the unit ball into an ellipse
i

with axes lengths equal to the singular
2 t,stretch volues

3. rotation, this one matters by the

ellipse is not rotationally: · need:Ve,=U[!]=2,

vez =U (9]= 22
U lyrotate/reflect that means that the columns

of U, n, 22, ... are the directions

e of the principal axes of the ellipse.

orthogonal basis for
orthonormal basis for IR" range (A)? IBM I

· so. A sends right singular rectors Ev,3, to scaled left singular vectors 36, 4,3,=1

· what about A*? A =USV*

1
*
=V"* so V plays the role of U for A
-

exchange right B left singular vectors, singular values unchanged
I

· the singular vectors v, ve,..-orientthe ellipse associated with A

· A*sends 32,3, t 36,43,1. A"sends En,3, to 35,43,



· The spectral perspective helps understand transforms, their induced norms,

B their conditioning
inputs outputs
-

· Recall, given AGDMA, and a pair of vector norms II. Ile, 11.Ilb

the induced o,b norm of A is

IAI.=serS",- ,EIIAXI
· E: All"-5IAXI, 3

· isErin irani
et

inputs in IR
e

· generically a hard optimization problem (Ex:even for arbiz, Euclidean distance), oftenseekbounds

· bounds on the induced norms arisenaturally from the spectrum.

·Pef:
given Heemer, the spectral radius of A, P(A) =mox311, (A)13

Imagnitude of the largest eigenvalue)
· then:

P(A)? All for
any induced norm...

square A

↓

· More generally, consider the numerical range ofA.W(A)=rnge(RC) where RAC):
trend

"Royleigh Quotient"

· notice, if v is an eigenvector of A, Avid then Ral):** ==x

· the numerical range is a compact (closed and bounded), coversubsetof a

which contains all eigenvalues of A

· if A is:

Atxwithmoss itticcommutes my its
n t eigenvectors

conjugatetranspose

generic A normal A

then WIA) is the convex hull of the eigenvectors



· especially useful for studying 11Ally (induced by Hells:V***)

· Lef: HAI,EIIAx1z3 =largest ratio of output length toinputlength.

then: All" =S:S**** ):5RqCl]-sup3/wllwEWCAAS3
· Fact: A*Ais square for all AtGmn (A*He D"

and is normal ((A*A)** *****=A*A.: (AA)*(A*A)= (A*A)(A*A)*)

thus unitarily diagonalizable... imsy

.: WCA*A):convexhull of [X,(A*A)3 :te=convex hull of 56,"(A)3 1
- x(A*A)
Inote:for **A

so, sup[(w)/w -> W(A*A)3 =mex E 6,(A)3 shouldallbe
ease

imag

so,"All=mx 56,A)3 =6,A)

11Alz =6,(A) · A.moral: the induced 2-norm of a matrixis it's

largest (first) singular value.

· why? recall the geometry of the SVD

mil.Eri the
IIxI=

nsmileitthestretch

reflect

unit ball:1KIl=1

the length of the longest principal axis is 6, input is v, (

· Allows us to easily compute: 11A *11,-6max(A)=11Alz
(A*takes 2, -> 6Y)

11 A I1z =Y6min(A)
(A"takes 4, -> I,Y)



· Stability of Linear Transforms:
· linear transformations (matrixproducts) are stable (forward stable, i.e. f(A,B):At then f(A,1) =A8 rff(A,0)

where I=0(3m))

↑
entrywise

· inner products B matrix-vectorproducts are stable B backward stable

Sif fCA,x) = An, fCA,x) =Ax+SACAS, ISAINANocasfereesonConvaS

and F(A,x) =f(A,x) where I =A +8A, =0(3m)
· outer products are stable but not backward stable

· generally:matrix products are stable B backward stable

if reduce dimension (input -> output)

not backward stable if increase dimension.

· the degree of stability (constant in O(Em) statements)

depends on the conditioning of the product...
·Ex: compute f(A,x):Ax

then 11f(A,x) - f(A,x)1l
=G(((A) 3m)

11f(A,x)() condition # of A

· Conditioning of linear transforms: given Hekman, how illwell conditioned are products w/ A?

problem is, perform the transformation
-

·

given At Den, xeGY, f(x) =As, and some norm II.Il on eme
then:

SKCA,x) =Siises meanyisan
-(A,x) =11Al)

· wont on xI bound,
· Def: the condition # of A, (A)= I3/(A,x)3=lAllEiti

· if At Chem and is invertible then 5 y St. Axy E) Aly = x for all x

(if non-invertible use the psuedo-inverse. At over ye range (A))

· then: KCA,)=IAllit-All" so KCA):EIAI "3-HAIs"3- All All



so, (A,x) = (A) Xxwhere:

· the condition I of A is: E(A):11All 11A'll

· Ex: using I'llz, IAll=Gmars IIA"ll=men5%,%,..."63: min

so K(A):tuo I
always lose accuracy...

· notice IIA IIIA'll is symmetric under inversion of A

so.

&(A) =11AIIIA"11=1(A)

· doing B undoing a linear transformation have the same worst case conditioning.

· This:
given AGDMYM, invertible and f(x) = As, f(x)=Ax ↑thus: the worstcase conditioning of 7 and f
and a norm II.11 on 44, then: over all inputs is (A),

k(A,x) =11All- All IIA'll it =((A) I (x) =0(((A,) () -0(((A)E)
(Aly):HA'll,,HAIAll 119x - f(x)

=0(((AY)5) - O(((A)2)
11 f"(y)/I

· if A"does not exist, use the psuedo-inverse, 1(A) =Gnox/6minto

· Moral: Ais ill-conditioned if:

maintent
(IIAX1=Hell for ally...

st I
·-----It
i

"W amplify error
-ASx

*

-
A

X Y Y

2. All is large -compresses a large input (bigin, small out) so, optimally conditioned, ((A)=1
-

pressinput-----------
if inputs don't change length

A requires special type of Al
X Y

A
-

Y Y I
· Question: why does the reverse problem (solve Ax=y, apply A")

effect the conditioning of the forward problem (compute Hr)?



· Question: why does the reverse problem (solve Ax=y, apply A")

effect the conditioning of the forward problem (compute Hr)?

-

pressinput-----------

A
X Y

Y

A
-

S · obvious for the inverse/reverse problem I love for inverse problems unit)· if disparate inputs -similar outputs

then similar outputscould come from disparate inputs...

·notice: compressing inputs requires combining large #'sto

Iterrors...numerically unstable
make small it's(either divide by large#, provokes concellation

multiply by small #, or subtract B nearly cancel)

· so, arises from relative notion of errornumber system

· recoll!

-(A) =15/(A,x)3= ri=IA5=AIAI
factor of in-> out from relative error

· Ex: IA'll is large if cols of Aare close to linearly dependent (parallel under combination)

then large a can be mapped to smally by A...

1-E
letA- ),it s j for small 370,321. Itis

· then Aexists, ill-conditioned for small 3... find largest. Heis very small (near 0,

col's nearly cancell

· pick: x =0 (1) then Hell =O(101)

Ax =E(ti)-Yig)) =12) so IAX1=0(11181)

then: e=0C13) can make All:OC191) arbitrarily large as 3-0

· ill-conditioned since the input -> Asrequires subtracting two large (0x2), similar It's

· need 3-12 +2) =35,5 requires concellation.



Hisday- 04/06/2023 - Orthogonality, Projection B Orthogonalization

· Logistics.
· Reading, HW2 B Project I posted

· Today'slecture will come in I ports:

· 12:30-1:20 today in class

· last half recorded is posted to conves

·Goals:

· What transforms are optimally conditioned?

· How do we optimize the conditioning of a basis?

· leads to:

· Orthonormal/ Unitary matrices

· Projection
· Orthogonalization (Grom-Schmidt, m6S and QR)

(square)
·Mestion:if XCA):HAHA'll, what A one optimally conditioned?

*A, I
· All=1,51) All 3 ="mas amplification of length" -III. Ax

- 1

· HA-ll=i, 511A, 113
=(i,51A-ll3] -"mox compression oflength"Ay

so, K(A) = Eltee
to scheine (CA)=1, we need 1,11Ar113=, 511AX13

·: need IAX1=1 if (1:1 X such e

that is MAXI/I1=1 F etO=> HAXH: 1x1

so ((A) = 1 if T() =As preserves lengths. HAx1=Hall *x

. using II.112, ((A)=me=1 if all 6 (A)
=6 so, A. (unit boll) -> ellipse

~I principle axes of length 6 ... the unit ball. Amust preserve length ... Allelle I

· a very special class of A... unitary matrices (up toscaling)



Unitary/Orthonormal Matrices:

· Def: given on inner product so... on a vector space X

U,VEU are orthogonal wort. (., if

(4,v) =0

"perpendiculer"
↓

· usually, U,VED", ntv =0, interpret it v

· Ref: Ae (men (man) is orthonormal (has Inorm cols)

if?

1. 112i11=1 X: (Ildill= 20:,07) - "normal"

2. 1: +9 *it = [1,n55- mutually orthogonal.

· Def: A is story if it is square is has I norm col's

· notation: oftenuse Q for I norm matrices

·

Properties,quer, Inorm colsiff Q*Q:In
a

↑ =0 if its
· why? IQ *Q];9:* 9, I

1-1 ifits

2. Q is unitary iff Q*= Q"=> Q*Q:I

Q G*= I.Y exercise

3. if Q is unitary, then 1(Q)=1, K(Q)= 1

· why? ... consequence of
...

4. if Q is unitary, then T(e):Qx, x T(), Ty)>:<x,y)

<T(), Ty)) =4Qx,Qy) -(Qx)*Qy =x*QGy =x y = (x,y)
I

· preserve lengths and angles..."rigid body"transformations

rotations B reflections...



· the fact that, if Qhas a norm col'sthen Q*Q: I

is very powerful.

· Es:suppose QECM, Q: 59,3, where E9,3 are a basis

for a subspace (S:spon/39,3,1):range (a))
then 4 xeS I y =4" s.t.

x =E,9 =ay for somey...

conversion x -> y, solve Qy=x

y
=Iy =a*Qy +Q4x.

Centrywise: y = [Q*r], =g,
4
x =g,*2,49 -, (9,,9 =y)

=O ifj= k ↑--

= I if j =k

· expense:n inner products, vectors length

cost &(nmb

· relative to generic problem, solve

Ay =xfor Ae(m+

cubic in dim of A

· and, optimally condition

· motivates working my orthonormal matrices...

· beps the question, what is QG* given QEDMM, orthonormal?

a =a=a1
QQ*is theorthogonal projectoronto range (Q)=spon59,5,1.

· why? Well, easiest case, Q-(m, Q-1]

QG* -,*-o a,cis, (9,9,4)x =Pa*



·Projection,review:

· Projection:

· ProrontoLines,say we are given a line IV, and a point
inspacespecified w

W
...

projection of w onto v =a point on

the line IIv "where w costs it's↳...
shadow"

& ..

-"I if wi isthe projection of wonto
~then the triangle formed by
~, wise, origin is a right triangle

· how to compute wir?
well, win is II tov so wid=d,Fi

W for some scolor d.

I rax >V

trig:
11W,ll=I1wIlcos(Owr)

-N Since wi, WV and v

---
I

form a right triangle w/ hypotenuse length Iwil-

-Our
1 IwIlcOS adjacentside length Iwill and angle Our

· notice:w=WirtWar, Wirt War IlWall=10ll=101ncter
Wi= W

- Wi

~w: 10) =11WIl cos(Owrl=1Iw",ull"

so w ==()=(i)=E
=v(r) =(w
=(invvi)r =(22) w

· Projector onto v: P,=(irt) = i,z(vrt) --

Pir matrixthat· Projector 1 to v: Pr= I-Pir since win-w-Wir= Iw-PW=(1-Pir) w projects onto v



• Instructing.LI?rgectors:-
• (Jit)

>
= Jiji icy>g) it

1-W

Hill 2=1

• onto a line v : I?r= it? zlvv" ) ← let's check : = i. 1- i sit

1- projector onto range (v)
• (Jit )? (it)

'

i' = fit

◦ onto a subspace let Q=[91,92, . . -9, ] be an 1- matrix
µ

whose columns form a basis for WEIR
"

f
then range CQ, )=w.'

'

ire '

"
i

_
-

we can project onto each basis vector 9
,'

via P =L Cgg
' ) = gqj"9 " 9,112

range CQ)=V = (qgqj)wso ✓
119
,

W
,,,

is in V = span/{ 9, , . . -9, }) so W
,,,

is a linear
w

combination of the basis vectors
...÷÷. :✓

119
,

•

W win = Y, 9 , + Yz 92 t -- . Yd 9,
= Quy

↓ ↓ ↓
" '

WN
if

= 419
,

+ wllqzt - - - W
,,q,' v92

i -

✓
• in components of w 11

range (Q) __ V to each basis vector

then : w
,,u=(9,9? )w+C9z9É)w + . --19,9J )w

= (9,9++929,'t . . -9,9;) w
d

T

g. ,
9,951=9,91+1--9292" t . _ _ 9d9dso : Pm, _- &

or
,
more concisely: P

,,,
= Q
,
Qj

• why? outer- product convention

-

Pmi /& &;§¥-&¥1=9,9," +9,9,'t . -- 9,9J÷:::÷: a
"

y
,

"

••W
=

,
?.gg

'

d ~'d>
v1

i.

so : I?uw=L(ggTw)=& '

✓= , !
(Gtw) = { (gtw ) qj

j=1 j=l ,

compare to :

÷÷÷÷•
""

"
"

"
"
"

g.µ, :. w.gajw.a-iicaiwii.it '-1¥!""

'

.
. . . : :

a:::::::÷÷:÷:÷i: ÷::÷÷ .
"

let Q=[QwtQw] be 1- and nxn
,

then range CQ)=1R
"

"i " ÷ :

-

÷ . :-.
w=Qy for some y. Q is 1- so y=Qᵗw

::::÷÷÷÷÷:
:

: :
" :

L

÷:÷÷÷÷i .

5- I 1 _ -

÷:÷÷

"

win, win
i



• w-hy-d.es/-his-wrk?

•

Suppose we have a subspace U

how do we build P
u

the orthogonal projector onto u

÷::÷÷:÷÷:i:÷÷ ."'"

[ ••w
• idea : suppose UEIR? then let Qu be and basis

:÷÷i÷÷÷÷÷÷i÷÷÷
.

>
v1

for V
,
let it be the subspace 1- V

,

let Qut
÷ : ii:÷÷÷÷: :÷: be 1- basis for u's.÷÷;;•i÷:÷÷:÷÷:iii÷÷:: :

:
::
: :

< - . : - ÷
÷:÷:÷:i:÷÷:÷: " then build Q 1- basis IRM
÷::i:÷÷: .

. : .
.

÷ -

t "

÷ :÷÷÷÷: 0=111.0111! I]-

-÷.÷÷÷ origin notes
- <

• now
,
Q is mxm 31 orthonormal so

Qtf we can multiply by QT to change coordinates

ii.
new

"

Q
" coordinates change card .

= 1- Q ,
-1

T

- - - -e.) 5
coordinates

w/→ Q w f w = (Qu
>
w associated w/ V

> - - - - - -

↑

,

••

" / Qui Qui
'
w

w in the

h"

Q
"

coordinate system
i.÷i÷÷÷÷÷i÷:÷÷÷! coordinates

✓
1-

associated w/

÷÷÷÷i÷ii÷÷÷i÷÷÷:÷÷÷÷:÷÷÷÷÷÷÷ in this coordinate system w
,, , the first dimlv) components::÷÷÷i÷÷i÷÷÷&÷:÷

;÷÷÷÷
: :

of Qtw
iii.;::÷÷÷i::÷i÷÷÷÷:÷i÷:÷÷÷ here 1- projection onto V is easy

Qi Qi
-

1--1-1--1project

"

Just set 1- component
a.I
]
,

0
I } to zero

.

but now
, moving back to

my original coordinates is
also easy since I just multiply by Q

w.ws/QvQi)w Qi?⃝ =ét:-7=1*1%-11
so :P

,,,
-
- QuQi h .

basis for IRM
that works

nicely w/ u



· rrblem: given a
basis 34,5,,)=(i....) =A), can we combine the basis

vectors (cols of A) to produce on 1. norm, basis that spans

S:span (30,3,,) =range (A)?

---------asititi .......I idea, use a, 210,
workor this
-

"God"bosis
basis, hard to "-igis
change bosis

· olution:set: 9, 11 &,

92 11 &210,
=

9219,
93 11

&310,,03+9,92 I write: A=(eig..]. Qs=(i...]
-

9; Il

%10...19....9,
where Q"Inorm and range (Q's: range (A's)

compute: as- *Rasis&=(I-Prass)= (I-Q'"0.**) as

=9 - 199a =a-en*9)ex=c-Ein
i

· Algorithm.Schmidt

·

given AG D**

· initialize Q: (J*, R=(jc+ <empty, will fill as we go

for jil:n
(i) propose a condidate direction:v=0,

(ii) orthogonalize, for K=1:j-1

C) rr =9,**,
(b) v =V -

rr)9k
(iii) normalize:

(1) Us =Hull

(b) 9,
= Y

(iv) store:

a=(a,,),R"=(-rit
Sinis as

· implies a decomposition of A...

2: A=QR =siijillwhere. Q orthonormal man

R upper triangular, non



· Algorithm.Schmidt

·

given AG D**

· initialize Q: (J*, R=(jc+ <empty, will fill as we go

for jil:n -

alternate algorithm. 9,*V

(i) propose a condidate direction:v=0,

(ii) orthogonalize, for K=1:j-1 ↓
I
computes:91Q4-1) =V104-1) =Pas-is"

C) rr =9,**, 52 equals 9x*V =(I -Pas-x) v =(2 - a4-s*)-
(b) v =V -

rr)9k --- sanct -v-Er an.
(iii) normalize:

Frey

is =1511c

mortalimplies:
exab: 0-anabs-a-se

V ↓- 1

(b) 9,= so!,-as-1 E, TK·r

(iv) store:

a[a], R"(init so:as:v-as
I 6=v,,9, +Eisi

, = E,is
· implies a decomposition of A...

2: A=QR =sisijillwhere. Q orthonormal man

R upper triangular, non

· decompostion: given Atman, linearly independent col's(rank(A)=n <m)

then 7Q and R s.t.

A =QR where QEGM has orthonormal col's

I and REG is upper triangular.
"undo the

orthogonalization"
· Very powerful idea: triangular orthogonalization only required inner products & lin. comb.

converts a set of a linearly A vectors "A" to it, normalized vectors "Q"

and, by storing the inner products involved in R, we can express all vectors in

A, say, I, as a linear comb of the preceding q's (B:six
· Works in any vector space equipped man inner product!



· Ex: Grom-Schmidt for polynomials

plrSell polynomials of degree m on it:0,b33

given p,9tP", (p, 93 =(=P(x)q() dx
11p112 = <p,p>

then con run 63 to convert a set of nim, lin. A polynomials

A =[0,x),dz(x),dz(x), . . . anxx)3 ,Q =5q,k),92(),...q,(x)3 conditioning (Q)=1...

e.xxas
65

3.t9,(x) 19(x) X its I
typically very ill-conditioned 119:11 = 1 X i

and 9,x)
=k, 9x() where was follow from the inner-prod.

computed via Grom-Schmidt.



· rrblem: given a
basis 34,5,,)=(i....) =A), can we combine the basis

vectors (cols of A) to produce on 1. norm, basis that spans

S:span (30,3,,) =range (A)?

---------asititi .......I idea, use a, 210,
workor this
-

"God"bosis
basis, hard to "-igis
change bosis

· olution:set: 9, 11 &,

92 11 &210,
=

9219,
93 11

&310,,03+9,92 I write: A=(eig..]. Qs=(i...]
-

9; Il

%10...19....9,
where Q"Inorm and range (Q's: range (A's)

compute: as- *Rasis&=(I-Prass)= (I-Q'"0.**) as

=9 - 199a =a-en*9)ex=c-Ein
i

· Algorithm.Schmidt

·

given AG D**

· initialize Q: (J*, R=(jc+ <empty, will fill as we go

for jil:n
(i) propose a condidate direction:v=0,

(ii) orthogonalize, for K=1:j-1

C) rr =9,**,
(b) v =V -

rr)9k
(iii) normalize:

(1) Us =Hull

(b) 9,
= Y

(iv) store:

a=(a,,),R"=(-rit
Sinis as

· implies a decomposition of A...

2: A=QR =siijillwhere. Q orthonormal man

R upper triangular, non



· Algorithm.Schmidt

·

given AG D**

· initialize Q: (J*, R=(jc+ <empty, will fill as we go

for jil:n -

alternate algorithm. 9,*V

(i) propose a condidate direction:v=0,

(ii) orthogonalize, for K=1:j-1 ↓
I
computes:91Q4-1) =V104-1) =Pas-is"

C) rr =9,**, 52 equals 9x*V =(I -Pas-x) v =(2 - a4-s*)-
(b) v =V -

rr)9k --- sanct -v-Er an.
(iii) normalize:

Frey

is =1511c

mortalimplies:
exab: 0-anabs-a-se

V ↓- 1

(b) 9,= so!,-as-1 E, TK·r

(iv) store:

a[a], R"(init so:as:v-as
I 6=v,,9, +Eisi

, = E,is
· implies a decomposition of A...

2: A=QR =sisijillwhere. Q orthonormal man

R upper triangular, non

· decompostion: given Atman, linearly independent col's(rank(A)=n <m)

then 7Q and R s.t.

A =QR where QEGM has orthonormal col's

I and REG is upper triangular.
"undo the

orthogonalization"
· Very powerful idea: triangular orthogonalization only required inner products & lin. comb.

converts a set of a linearly A vectors "A" to it, normalized vectors "Q"

and, by storing the inner products involved in R, we can express all vectors in

A, say, I, as a linear comb of the preceding q's (B:six
· Works in any vector space equipped man inner product!



· Ex: Grom-Schmidt for polynomials

plrSell polynomials of degree m on it:0,b33

given p,9tP", (p, 93 =(=P(x)q() dx
11p112 = <p,p>

then con run 63 to convert a set of nim, lin. A polynomials

A =[0,x),dz(x),dz(x), . . . anxx)3 ,Q =5q,k),92(),...q,(x)3 conditioning (Q)=1...

e.xxas
65

3.t9,(x) 19(x) X its I
typically very ill-conditioned 119:11 = 1 X i

and 9,x)
=k, 9x() where was follow from the inner-prod.

computed via Grom-Schmidt.

· modified 65: same as 65, but, compute i=9,* differently...

· Algorithm, md.Schmidt

·

given AG D**

· initialize Q: (j*, B=[jca

for jil:n
(i) propose a condidate direction:v=0,

(ii) orthogonalize, for K=1:j-1

C) r =9,*V s compare to GS, k
=9,* *

(b) v =V -

rr)9k these are the some (theoretically)

(iii) normalize: 9x+ 9 =0
since, of stage F,-1

(1) Us =Hull v =c, - is in so:9tr-q-=ax*s
(b) 9,

= Y
(iv) store:

a=(a,,),R"=(-wit

allows us to reorder the loops, every time we computed an

remove it'scomponentfrom all calls of Aleft to orthogonalize
soll &, 2K)



· Algorithm, md.Schmidt

·

given AG D**

· initialize Q: (j*, B=[jca

1. Set V =A

2. for
: 1 to

(i) =112, 11 Inormalize
(ii) 9Y

(iii) for Kis+1 to n

(d) ,x
=9,* V I orthogonalize

(b) Un =4 - 5

n9,

(in store:a"=(asis), R"=L)
build one row



Week 4 -Orthogonalization B Fast Transforms,(inverse problems, linear systems, least squares)

Logistics:
· Reading & Project I posted
· HW I due on Thursday
· HW 3 to post Wednesday

Goals: I part lecture.

(i) Householder...

(ii) intro to fast transforms...

nm
f

· holders like 65, given a At Chen, convert A -Q, R s.f. A:QR

where?Q is orthonormal =Man, mem

R is upper triangular (nen, man

- ne
-

, ②, R

· S: A>, triangular orthogonalization
I reduction via a triangular matrix (recorded by R)

· beholder. A
row

or>R

I reduction via on orthonormal, unitary motrin (Q4, record Q)

· Toke-aways.
1. derivation process

2. block matrices B block products

3. implicit representation of operations
4. mathematically equivalent methods can be numerically distinct



· Periving Householder: reduce A + R vio unitary operations (row operations)

! !
A ) A(z) A=R

A(0) I
①"Q"** =AI QQ'A=A* 1 Ni Q"*=A=R

recarsion:A
Y
=&"As), A=AA= R

A=Q"a...Q"A

flas-Q(gjA=R, a*A
QQ

*

A =QR

A :QR

I Q =0
*(*...Q-*(n)*

①* explicitly maps A 1->R

Q... 12 Is A

·goal? build the t projector Pin***

applying 4 =PAx =(*x)

·Ex: storethe minimal information needed

to apply the transform T"():Q's *
~ k

Q x =a(n)q(n-1)...Q)Q"x
=T[Y*(... 7(r)))
=pin3 +(n-... 0 TC3T"(x).

perform recursively

x=

x, x
=7"cr's) 2 multiplication by

Q
*

implicitly.



* I M !
A A(z) A=R

-(2)
&AA S

①
"

(r
- x
=A=R↑10s, 0"Otisof

A I
diss"will only change rows 3...m

only change rows 2.0.n

design: Q' only change rows ....m of input.

method:blockconstruction ofQ? Q" = Eitaneirons
of a one

· block multiplication by matrices:

M = !+87. =)I
My'Attto totoili!

· check. as[ti, A. Itfe
3-1)

=asIsetting(inits Is" ione:



· build I" (reflectors)

of stage I's, L'slower m-y-1) rows of Ass
Ide,

=(1,0,0...0]

-)).
--

I
X

Lef: of stages, Ibe the lost m-yg-1 entries of th col ofA

A- ms,
Itake rows, to m of th col ofA

·general problem:find a unitary matrixI'se DM-1 em-35-1)

S.t.

Fix ==Ixo) ==ie,
Irequire zG&, 1z1 = 1

· for simplicity ... pickz:1 (for now)

· unitary transformations: rotations is reflections

........ Laf: itresetthelet H=[y1y 1 v 3

reflection across H sends x -> le,

going "halfway". *H*Pn*=(I-pp) x =(I-pi) x =1 - F) x =x -er,
* =x1H

2reflecting:x-2x1 =1 - 2 x=,
- ie(r+x)v =F"x
-ne

perform E'simplicitly I= 1 -2*
using V

2
· need: F(14-1 =13- - - v(ves*(-)

1IV's 11 2

implicitlytiesby Fi



· deck is I's unitery: let v=,try

0) Fix*: (1 - zvr+)*= I 2n***-1-2r+= 7's (Hermition: thus Q' = Q"*)

13 F's is square (m-3-1 xm-g-1)) -

2) F(*F() =(z-zwY) (2-zur)=1- Yurt Y nen= 1-4u*+4r= I v
--

2F* =F = Ivll=1

· ok, so, we are almost there...

12) =1

· how to reflect y tolxIe,?
use the same formula:

v =z (x)e, - x

F" =x - z,,z(r+e)v, F=I -z

· What I is best?

· we want to perform the steps:

1. v =z 1x1l2, - x >unstable if a small (concellation errors)

2. =i I unstable if a small (divide by small *)

3. F4 =x - z(v+x)v

so, choose I to maximize IlvllI(z = -sign(x).

· then: V = -(sign(x,) 11x11 e, +x)

equivalently JF" always uses new or vit)

V =sign (x,) Ix1) 2 , + x

·So, Householder explicitly! · implicitly. (never build Q or Q or F')

1. Set A=A 1. Set A=A

2. for sal to n So for
: 1 to n

(i) x=A,,, maint (i) x =A,me,
(ii) v=sign(,) lxle, + x (ii) v=sign(x, lel 2, +x

(iii) re=pisy V incolumn (iii) ris) =1 vis

(iv) E= I - z vis) vis I
11v3s11

sa_ EsenixI -election,perform implicitie
lins A,me,sinsA,Deins-2 was (res*Asnee

(vi) A=Q' A's-K
A

3. Set R =A", return Swiss,
3. Set R =A Q* =Qg"...QQ".

I

encode &implicitly.



· Householder vs. GS: Atamen

Cost: 1. implicit Householder is faster (O(Imn" - Yn?) vs. 8(2me))

pros
2. Store Q efficiently via Eviss3,

(H) 65, m6s)
Cis applying &implicitly cheaper than applying Q explicitly?)

Stability.Householder is provably backward stableI
more stable than 65 or m6S

COnS i
GS $ m6S build Q explicitly, in an "online"

(65,m65>H) fashion (each new cold -> 9,)

Householder builds 9, using all of A, cannot perform sequentially.



dzo · Goals: fast transforms'

· HW 2 due tonight · Ex: building a fast wavelet transform

· HW 3 · the Fast Fourier Transform!!!

moutputs inputs

· Fast Transforms: linear transform T(x) =Ax, At GM has cost 0(mn)

·

can be prohibitively expensive: image processing - 1080p image has 2x106 pixels, 3 color

values I-> n on order 107, O(?) = 10" calculations

audio - 44.1 KHE, 10" values per second, 3min -> 100 values

⑧ (n2) = 10 colculations

video - 27 fromes a second, 2 hr movie:120 min+60sx24:10"

10
"

values!! O(n2)=1020

·yet, we perform signal processing on a massive

scale all the time... Lw?

· idea! use transforms T() whose cost is almost Etpractorat0(n)...

· fast transforms:T(): IR"-> IR" cost O(n)

Insually, OI log,(n))

Iway faster, takes 109?") less time

·how?

· use I matrices so inversion is multiplication and... stable

by A", cut cost O(n) -> cost of Ax I
· exploit symmetries of the transform

that make certain inner products I recursie blocknationsoculatoris
redundant.

· Ex: a=(),ate), wontA, noirely:Ax= inner prod. I operations each -18 operations
S op

3 op

if we compute me still wise.It is operations:

then At:(nj320p, 10 total



· Allenge: design a bosis [9,3, for IR

S.t.

useful -- 1. the transform Thy):Ay is meaningful
stable/invatible. 2. the as are I

cheap 3. the as one sufficiently symmetric/repetitive...

· Ex: a wavelet transform

* is a signal (say audiol
x=amplitude of time t =st

· represent signal as sum of wore(lets) of

~I verying frequency is duration: &Factintentin

-pinning.
...jiitisisinterpolationprotein i

&,(t,) &21.) .. . an1)

Iimpolation:A= :
·

2,(tn) &2(tn) .n.On (tn)
*

trciSiglerin ! -,(tz) &z(tz) ... nSty)

· then Ais a "Vandermonde"matrixfor

functions Ed, ()3,, of samples 2t,3

· solve Ay =xtowrite

Time x(t) =8,4,g(t)
&

coefficients/representation
in "frequency"space



· a particularly easy transform:
· let 9,(t) be asquare wove (one period), I

"mother wavelet"

· dy(t) =1, (2+) (scole down)

iii i. dy(t) =0,12)- T)) (translot) j 2 copies, half the size

· · dy(1) =dy (21)

&(H) =dz(2)-T))it L
6

·

>

Pf(t) =0z(z(t- 27)
4 copies, by the sizeI dq(t) =0

=
(2(+ - 37))

I
y these are wavelets. Call G, W, A, W

i I
· represent x(t) as linear comb. of square waves

copy/translate

of differentfrequencies B off sets

·Iiniti f
S

-

I i I ! I
I 1 I -I

I I - I

1I i i: ! · is w() orthogonal? (yes)

·then: Wim: I
~ I

· is W'm cheap to apply?
I ~ I I

w(n)
a e 8

?
1-1 I

I ~ I - I

-

n



compress by factor of 2

wineitisinthe

subdivide and
compress again

I

"mother wavelet" -. Exof a wovelet basis

· build bosis by recursively compressing

i- an initial worelet, then considering
>

all of it'stranslations. · 6

·
· W formblocks of size 1.2
- far

5:1
to m is zMx z

L

it
-i =Y r-

.

i · 1. 1: the col'sof Wim are mutually t... copy/translate

so properties:

W "- W"
up

to a diagonal scaling (normalize

2. W is square so W is invertible and

rows)

3. normalization: col 0 has length=
=2mz

colI has length =2
n/2

cols1=2...m have (2")/2s"nonzeroes

length =2(m
-3-1/2

·Finis so Dilts()(r)-(jer,...,()]normalizes
W...

-
Wemspms is unitary



·so wis":dieg((()", ()"(v)*",(k)",...) was=0 Wis
# nonzero entries in each row

->eiitemi· so, given? n =2
m

x(t) = EYWs) =Y W8 wass
⑧

Fogofrege
· Challenge: compute win"foster than O(n2):0(2<m)

--

Yo Yo

X, Y,

itisit.* 3 I

e iam outputs,can'tseethe
*2 I Tz I

· notice:Welooks a lot like w,x... to OC.C

cut: (multiplications) Cadditions) I Sotal
try: compute:4:Wo=Ex =x n =2m n - 1 =2 - 1 2n =yn+

niz - 1 2*11

S n(z =2m
- 1 -1 =3*== 2 =

2
then, compute: y.*Eos *stos

-Ear
=y- Cy -Y**)

ir-
Yo

=2Y I I I i 8

computes 4, BY, in 2 (n+2n) steps
instead of 2 (n +n) steps

· to get to login) complexity we recurse: holved the cost

for 7,

· Yy is to y() as y, is to y
()

· if we compute only the inner products
or the grey

shaded entries (W"=1), then

we can compute wim...



cost cost
--

- Yo
=y(z) +y(z) IY

4.1-4, =y(z) - y(k) =3y() - 4 --------X,

----.
---- n +2

*2 7zitist I I iiiiiiiiiii,iti:

X 7 -
71-

y(3) in I
total cost =2. Jared shaded grey) + (2.4 rows - 2)

n + (blocks). n/z

#blocks =m =log,(n)

total cost =2 (n + log,(n) n(z) +2n - 2

=log,(n) n +0(n)

a few combinations-
I I

mony small calculations

so cost =0(n log, (n))!

· this isa "fast" transform.
· Ex: m =20, n=10 Savings:

cost of Wins"directly:0(n) =0(2"") =10
21

5(oh!)
T I IWill directly:0 (n2) =0(2 in) =10

*

(ugh...) 107 times faster
Wims"recursively =0 (nlog,(n)) =0(m2") =108

T
symmetry)

100 times faster
again

hardly more

then it of

outputs...
asymptotically log, (n)

calculations per output

· Other fast transforms, matrix multiplication methods use essentially the

some trick, recursively blockcomputation to exploit symmetries

· Ex:
apply, invest,

1. the fast Hodomord-Wolsh transform

32. the fast Fourier transform (FFT) CFHWTC] oculog,c) instead of OC) or Oca')

-↓
3. the Stressen algorithm (O(n2.307...) for AD instead of 0(n))

e [log,(7), not nlogin) since no symmetries
a ssumed.

extremely useful...



· The FFT: performs a fast, discreteFourier Transform ...

· input! x =[xo,, .
. . n-1]consider samples of a periodic signal: T

Xp=x(0),x, =x(1t),xz=(2st), . . . n-,x((n-x1t), xn =x(nT =x(0) =x.

repects every a samples

· assume n =7m, otherwise, zero-pod

ii..X
. goal: interpolate on basis of T periodic harmonic

functions of increasing frequency - increasing freq K
>

. e.g.: sin(2), cos(2ik) 1 I

jeikzitsinC...)+icos(...)
so F
=(fasts fists ... fists

for x -C0,2,...n-1] ~tr-

· in terms of the samples:
↳

wowow?"e
fr(t) = yikzn+ no we wine
frt):Fr =eikr/y_einen!!=(eiwor

I i : I
No part far... wi-nee

"W

· then, Vandermonde matrix of [wiwiw?...w"]

is the Fourier disset) matix: E:willfor wie"?)
Font: I hostcolumns.

(not normalized, length (n)

invert via F(ns*_E(n)
· What is we rotate

-

· rule for complexexponentiation: given z=1z1e"*, *: (l*eik8=(E1*(cos(k0) +isin(k))

· raising we rotates in complexplane...

· wie
it:the 1stof the a complex roots

of100.

·I



compare: Wine for n=4,8

A4 n =y

. ..tom an in"
notice: Win =Wi (Ex: was wins-i, wias"-was--I, etc...)

thus: powers ofa repeat, Fins and Fiens share entries
... redundancy in a recusive

block/multiscale fashion

· Ex: n =4,w=i

11 I I
i

I 1 I

I I i - 1 - i
Fus*

I
=, -↓ in I I i!

K = 0 2 3

swap one odd columns tonatal

entire enteresnotonee >blocks are redundantI after swapping even $ odd

even a odd K
K= 8 2 I 3

the blocks are related toEast),it.*Ens. 1-)'if Ees=Das Fus

I Fies50 -IT:(7t



so

Fix:S,z) I") P.and are we can build Fins from Fine!
↑

change signs

(sparse)

ji!] Fes(12Fe

· Gerally. Fans Sinres((H1") *Fnras) Peven-odd

· Sequence: we can perform Eins using:
length 2m

-
1. permute even B odd, use Paris splits x=[40, 41, 42, 43, ... and into a signals

To apply F to ↑
even,Yodd Fea-oh,airlength re(a) 3

3. apply a sparse change of signs Sinie)
and combine

· costs. 1. Cheap, O(n) swaps a linear time

2. 2 (cost of Fines) dominates

3. cheap, O(In) nonzero entries a linear time

· now we can recurse
...
if no m then, every time we need to use

Ecel use Ecerz) twice...

~I permateeven B odd, use Peris- 1. permute even B odd, use Paris - 1. permute even B odd, use Paris

1. apply Ecens 2X To apply Ears to
even,Todd 2x

To apply Eury to
even,Todd 2x

To apply Eucy to
even,Todd

I
so apply a spouse change of signs S,ynis 3. apply a sparse change of signs S,ymi) 3. apply a sparse change of signs S,yME)

& I r
and combine and combine and combine

1 xF(zm) =2 xF,zn- 1) =4 +F-

x)
= 8F,yn- 3)

I
↑

smaller computation

#)of times n

· so: applying Ezmy: applying Fem-ey 2 times Iapplying Es 2*In times semany small computations

~I conversions xm =log, (n) conversions!(a few combinations

1. virtually all signal processing - denoising, convolution, filtering
· cost of FFTis O(nlog,(n)) if n =22! bosis for: I. doto compression B transfer

itscanning on.

↑ it 3.Spectral analysis - thinkspectroscopy, exoplanet detection, seismology
incredibly cheap

4. soln methods for PDE's - heatequ, diffusion, wores, SPE's



We Problems (direct methods)

-Inesday - 2023 - Systems

·

Logsin reading up
to part I

·HW 3 ossigned Tuesday, due next Tuesday (April25th)

· Project I post, due May 10th

· Gols:
· introduction to inverse problems
· Gaussion Elimination

·LV decomposition
· cost stability B pivoting

·Ex: imaging, interpolation, steady
·FreeProblems:given a transform ("forward model". Tix -YY/ state problems for dynamical

and on output yeY, find - s.1. systems, optimizer updates,

T(x) =y. I etc.

·if X, Y finite dimensional, I linear, then solving
a linear system:given Ae Dunn, ye (" find toest.I

Ax =y ↓· general soln: if T is injectiveone-to-one then T(x) =T(x') iff x=x

:letT: venge,E TK)3 · 3X s.t. TYy) =xif T(x) =y
"psnedo-inverse"

↓

yGrange(A)
t

...

AteD** s.f. Hy =xif Ax-y =HAx =x

A
+A =Inxn

-- n<m ·
· if T is bijective (injective B surjective) then range, [T()3=Y

so T=T", TY) =xs.t. T(x) =y F y = Y

...
A square, full rank -> AtAl Aty =xif Hezy AA=Inen= HA

· Numerically: never compute it. Why? usually only need x for acoupley's, not ally scheaper

11A"ll IAll for many examples, lose structurein A (sparsity), and, only need Aimplicity
to computex ... use reduction methods instead.



·LeSystems: given At DM, beG** find xe Ds.t. Ax=b

·

Ex:I3 grouping (unknowns,(I knowns:

:(!]=()

given A = 11]. b:l3] find xs.t. Arrb.

FreeI
·Ex: (i) 4x + 2V+2w=10

31=o): (jij "(ii) 2n -3v +0W=-1 - i i
(iii) -2x +7V + 2w =9

"T / multiplyrouteto
augmented
matrix

1. Reduction,rows) to eliminate variables

i.e. to set entries to zero ↳erular
(i)

i i
- Yz(i) +(ii)setti (oitsfissionitsj

contel
out

2.substitution: now, solve from the bottom up

!I-isi
(iii) 0x, +0Xz + (xz =2 1- xy: z

(ii) 0X -4x2 -1xz = - 61- - 4xz - 2 =
-61 - 4x = - 4 +xz=1

(i)4X+ 2xz +2Xz =10 +4x, +3 +4 =10(4x, +6 =10

I
4x, =41-x, = 1

·So,x= [1, 1, 2]

so, X

↳2
-
1



thismethod is anElimination: general algorithm for solving linear systems

1

rrduceuroisworth,intenclear column I

%=not zero

E 3 = row to use

... - **A",staX =to be eliminated
column, beneath the

.llkirtinbacksubstitution
2. besub: solve backwards bottom to top.

1. initialize U =A, L=Imen↑ 2. for 1:1 to n

· Algorithm:inputAcpeer,be

institu(i) for i=j+1 to n

(0.) hj =nij/4
(b.) Misjon:Vi,sin-lig,,son= C.) bi =bi - lijb, Clem tocontboth pivotsapply some now operations to

bat: ("W

itto initializeInee ,tygreness
isitsmissesiflower fingere



· The LV decomposition:

· Lef: given AEG invertible, 5 a permutation matrixPEIR**,
S.t.

PA =LU where?
-

reorder the
rows IDenTowertriangular

(a ?,=1.!Heiei
·gool of permuting
improves stability

I ai =li
· reduction: Gaussion elimination reduces A s U

vie

A =0--(
row up"

W'="y" ...sW=("
-

((a
-z)

·itis. Itisit....
e -

e

"does"reduction "undoes" reduction
I

· so:
itistune wir

SO

- I
..

= isin. i i
I

Ireduction:
escities in

nion=si-lige,

LEY1by negating entries below the diagonal.
· build I implicitly during reduction



· advantage of LU: given HEDV, L, U known

((ux) =b

solve Aemb & I solve Lyib via forward sub

2. solve Uxy via back sub

· much foster if L,U or known, or solving Herb for a sequence
of b's...

· ComptonalCost: how expensive is Gaussion Elimination (H->LU)?

Bock-Sub?

↓
same

as QR...

reduction:given Anew, the costof red. is on (0(n))
Iexpensive/slow

· Why? In-l stages S, from 1 ton-1)

2. operate on n-y-1 rows wi

my col's, only need for my-1 col's
multiplies fitting rooprations

(cost: I multiplier per row

row op: 1Q+ 10 per

entry =(n-

-1) (1 +2(n)
- 1))

#rows

↑

myiiiiiiiiiii=2(n- - 1)-0(n-j-1))

cost =42 (n-1) -) =n +0(n) -n
I leading order

· Sub:cost on (0(n))

In stages, at th stage do v2(-1) +1 ibints"anoperations,

cost - ,-1) =2((n+

1)
~n

+0(n))

so, cost -n

· moral: row-reduction is much more expensive

than back-sub e

-

· ↑

O(n) ⑧(n)



· general trend:
· reduction/factorization is expensive:O(n3) I-some

cost as multiplication!

.

using reduced/factorized matrices is cheap: O(n2) or faster

...n" is cost to reduce, n is cost to use...

· given H-Fet,...F, forsome factors

if we want

/compute A=(FE... Fe) =>A =I explicit, slowAs could cost:O((1-1)nY), O(n)

I compute: =FY, x=x implicit, fast
cost:O((1-1) nY)

don't multiply factors, apply in sequence

Ax=F(F
-
)... ((F,x))...))

workwe decompositions implicitly when possible

· Stability B Pivoting: is Goussion elimination A -> LU stable?

no!, notwont porting Clecture 21)

· Suppose that, ofstages:motfittthe pivot ess"is very small

Cor eyes" for issl

then multiplier I.="is**n,st) requires division by a small number!

unstable (extreme case. Y = 0, divide by 0 error!)

·in principle there is no need to reduce in order...

- I

ji
3 - I

·

Ex:jisit: :?It:y
has the same sold if we reorder the rows

oh!pivot=0

·idea, pivoting; ateach stage, reorder
andinstarch costto expensive

to maximize the pivot

partial pivoting: only swap rows 5only adds O((n)) search cost.



· IVw/ partial pivoting algorithm: at each stage, swap rows to maximize the pivot

input A EQ,bE C"

1. initialize U =A, L:Inan, P= Inan -stores the
swaps

2. for 1:1 to n

(i) find K= argry, 512,13
suf

costOCnrg)
I entries to search

(ii) pivot:

(d) ,,snrcon, bb, swop rows, BKof

U, b, L, P ↑

islist eris-I
boste I I cost O(n-j
keeping

#entries per row

Civil for

(0.) 1i =4ij/2,
reduce as before

cost 0(n-))

(b.) Misson:Migin-lij 4,,sin I I still dominates, asymptotic
(C.) bi =bi - lijb, cost unchanged.

then? PA=LU

· Question:is Gossion Elimination + pivoting -> substitution

stable? bockward stable?

Clectures 17 B 22)

7

1. Conditioning: given AGG", beon the worst-case 6,2

conditioning of the problem:find x =Ab itissix
is CA):HAI11Al) )=Gmax/6min if use

A-
1

11112) -recall conditioning of linear transforms lecture

· ill-conditioned if 6min Gmax, IIA"ll IIAll

2. Stability of Bock (or forward) Sub.

Ihm: given UEDY upper triangular, then

solving for a set. Ux=b via substitution
solve almost the right problem

is backward stable, i.e. the computed soln I exactly!
*satisfies:

(U + 5U)I =b

where: 184is//inijnEm+OCE) Fiss.: IISUIXUl =O(Em).



3. What about Gaussian Elimination:A -P,L,U?? lecture 22)

· Goussion Elimination is explosively unstable forsome pathological examples
but
... in practice is alwaysstable ... acts as itbackward stable for real problems.

It forthe class of matrices appearing in real problems)

· First, Gaussion Elimination +pivoting is neither stable nor backward stable

· in the following we assume A =PA (pirot to optimal order a priori)

·his: given A:LUEC", compute I,via Goussion Elimination

then:

-

A +SA, 116 All=11LIIIUNOCEm)

backward stability... like QR, IL and EU

only hope I= A
...

↓limitlarge n

· problem: w/ pivoting, Ili,!?) w=iff its so 11L11=0(K)

in any norm, so

11 SAll=IUII O(3m)

but, IUII can be All so the relative error

1SANIAI=,All OcEm) can be large

·define:the growth factor - eat,then IUI=OCHAK)

· Thm:
given PA=LU, AE D* computed via Gouss. Elim. m/ partial

pivoting then p =P for sufficiently small inif I,(2) for

all is, no ties in pivoting choice) and

TY =PA+ SA, where: "=0( 3m)
· then, backward stable if :0C1) in n....

I 2
but, consider:

(iii then u=l " I so p=16
=yn

- 1

·Fact: es" and 7a sequence
of EA"3.,A"ED" st.p= 2...

·looks like a disaster, lose O(n) digits of accuracy for linear systems size nen!!!

test this!

· in practice: extremely rare.Ifpropose an experiment...



Thursday- 023-Least Squares Problems

· Logistics.
· HW 3 posted, due nextTuesday

· als:
· Least Squares Problems:

· motivation - dangers of exact soln's

·definition B geometry
· the normal equ'svs. projection
· direct methods:

1. Projection B QR

2. Normal equ's B Cholesky

3.Psuedo-inversion SVD

·Motivation - Approximate Soln'sB Fitting:

· Ex: consider the interpolation problem:

1. sample times Et,3,6

2. signal; f(t) + 37,3,,f, =f(t,) +E itatthetryto interpolate my function basis (b,3,1, by: -2 +IR
· Ex: b, (H)=1, bzct)=t, . .. b,(t) =+

**

(poly, interp.)

wont coefficient vector s.t.

g(tc) =E,bCt) interpolates f of the samples
-

g(tc)

g(51) =2,bx(t) =f(t)=f,
⑧ --

= i : !

!Ib,(tz)

Askwhere.

sociate inthe

so, solve:Jijiji
· Problem: an interpolent g(tc) only exists if ferange(t) numerically very risk

fitting!unstable!
and is unique iff to is full rank (men, lin indcols)

· two ideas:1. Add basis functions until ferange (8) -> min - for polynomials, in data points a degree mil polynomial
2. give up on exact soln's(interpolation) and approximate instead (fit)



·etsaproblems... Solving Axb

· Suppose: given a man and b mxl

Iusually seekx s.t. Ax=b often occurs when over constrained
...

whatif by range (A)? more on than owns

then no x exists s.1. Ax=b m
>
n

this is the standard setting when fitting
data to a model:

So doto & range of A rense
in

dota =Ax +measurement error

or,

data? Ax but w/ modeling error

so, no xexists set. Ax=b, let's find x s.t.

Ax is as close to b as possible, that is

xthat minimizes the discrepancy:
discrepancy =Ax - b want Axub so

LS problem: find - which minimizes IAX-bl,
disc. in its entry

equivalent to:
m -

find which minimizes (IAX-bII=,CAx-b):

I =sum of squares of discrepancy.

Fact:the LS problem has a soln for all A Bb5 soln always

(note:the soln may not be uniquel exists

· What about uniqueness?suppose * to the LS problem and I

ze null(A), z O

11A(X +z) -bl1 =11Ax +-bll2 =1Axx-bl

8

then xx+Z is also a soln, so soln'sare not unique.

· Fact: the LS problem has a unique soln iff Ais full rank

Clinearly independent columns =>mIn



· LS problems are the most widely solved opt. problems ...

1. data is often noisy, noise-Goussion dist, prob & expl-Il discrepancyll?)
2. LS problems are "easy"to solve at large scale

3.LS problems admit many methods/approaches

4. IS problems are easily generalized, adoptible

· ok, so how do we solve them?

· Ageometric soln for IS problems:

·

given A mm, 6 mel find! *Fergmin (IIAx-b11?)
*EDI

· a picture to build intuition...

Is discrepancy ·try a series of XvaluesI ⑧ S Ax - b

>range(A)

< -- · tice: Y is chosen such that the discrepancy-

↳ I for varying · why?

is 1 to the range (A).

-

b

↳

·

..-(Arb!ei ·entiint b projected onto range(A)
⑧ M- ·f *-(Ax-b),

rangethe
IR -

I so Axx-barange(A) + proj

~null(A*) of b onto range
(A)

· bel" so Ax-belR" .. can decompose the discrepancy into

a component in range (A) and null(A*)... (Fund. Thus: IR*:range(A) * null (A*)(

Ax- b =(Ax-branges! (Ax-b),IICA) =tronge(A)



·

Moreover (Ax-brangezA) is a (Ax-bynmIIATs (Fund. Thepart II(

so, by pythegorus:

(H) 11Ax-bI
=

I1CAx-brangesas1 +1) (Ax-b)nnIIAY
- met

depends on x some for all

so, minimizing HAx-bl" is the same as minimizing Il(Ax-b)prongests I

(*) brangesinge (A) so Ian x st. (Ax-byrange(A)" O

· by (*) lAx-bI* =11CAx-banulAll" for all x
and by (44) of ** S.A. (Ax-b

range(A)
=0, lAx-bl

=

11CAx-bS,nIIA 1l

so ifIsolves the LS problem then (A41-b)
range(A)

*0
& a b

discrepancy =Axx-b =(Ax- b)nAOEnullCA*)

·: discrepancy is I range (A),discrepancy null (A*)

·

rnatePdiscus
re of soln tothe discrepancy

mustbe 1 to range (A), since

centered at b of smallest radius intersectingI
~null(A*)

>range(A) i itis a radial vector to the circle/sphere

range (A). The circle must be tangent to

- mallest Idee the
range there, so the radial vector is the range.

.: discrepancy (null(A*)

· Consequence: at soln xx, discrepancy null (**)
So...

** (discrepancy) =A*(Axx - b) =0

rearrange.
A*A) x =A*b X- but this is a linear system!!
-

the madequ's
· Can solve all LS problems by solving a linear system!



·m: given At Dmey, man my linearly indo calls (full ranks

and beD" then the LS problem:

find xx =

argmin,5HlAx-ble

has a unique sold for
any b, and xis the unique

soln to the new linear system:

(normal equ's) (TA) xx=
A*b.

I

if men then "overconstrained", more constraints than degrees
of freedom:

=1):jets.Isa joy
(nxm) x (men = (men), in x m) x(m) =(n)

them:** (x=(1+j
(nxn) + (n)

=(n)

·the normal equ's compress the problem to on new system of equations!

↑by proving this!

· notice: if A men, full rank then A*Ais new, full rank (lin,ind.cols)

so (AYA)" exists...

** =,*b =A
+

b
↑suedo-inverse

· Det: given Atamm, man, full rank, the pseudo-inverse of A is

At =(A*A)"**

and Ab-* solves the LS problem, minimize llAx-bI*beK"



· how to compute A=(A*A)"A*?

use a decomp to avoid explicit inverses...

· Exw):A=USV*- A*=v5t+

raaj: It:Sisa?e
CA*A)

-

**=v4jX*st+ - v(ri)x))r+=vert
·At Vatu*mijjrtj

· So, applying Atb implicitly:

1. A= USV+2. w=[]b 3.y=Ns 4.x Vy.

· alternatively: discrepancy:(Axp-b) Enull (AY) =range (A)
t

·

already Grange(A)

Ax
x=barange(A) tolinear system!Merries,andtIR·soln: given A man, full rank

1. A=QR, Qman, Ren I

2. solve RXx=&*b i substitution

I notice: same as plugging A-QR intoAt...

** =A
+

b =(A*A)"**b =(R**R)"**b =(R*R)"R*a*b
=I

="R**:R"* so * = Rx *b.

·

gives three different directmethods...

I
decomp based, solve exactly in exact arithmetic in finitely many steps

Stability Cost

1. Solve w/QR (projection based) stable enough (backward stable) in-between (usually, fast enough

2. solve w/SVP (psuedo-inverse based) most stable (backward stable) slowest

3. solve w/ normal equations (LU ofA*A-> Cholesky) unstable!! Isquares (CA) when fastest
like LU, but a good fit is available!!!)
exploits symmetry



· Comparison of direct methods:

the Goldilocks method, compromise stability & speed,
A numerical method of choice (usually)

1. Projection: use QR.

d) A =QR (Householder) 5bookword stable, cost:O(2mn? - Ygn")

b) compute Q*b (implicit) -coud.=1, backward stable (man),cost: O(mu)= noire
cost Zmm-2n

c) solve RX*Q*b (substitution) - backward stable, cost:O(n2)
!

·Stability:backward stable, 11(A+SA)*-b11=11Ax-bI1, =0(3m)

conditioning:conditioning of original LS problem

· Eti Zmm-In" (cost of QR)

2.Psuedo-Inverse: use SVP

a) A =UEV* (we don't know how to do thisyet);??, cost 0(mn2+IIn3) I cost 2mn + 1In3
b) Y, =(n,*b) =cond=A), bockward stable (nam), costO(mn)

c) xx=Vy > coud-1, backward stable, cost 0(n2

·Stability:backward stable, 11(A+SA)*-b11=11Ax-bI1, =0(3m)

conditioning:conditioning of original LS problem

· ctiv2mn+1In3 (cost of SVD
... roughly)

*most noire implementations
3.Normal Equations: use Cholesky (LU for A*A) BE CAREFUL

d) y
=A*b <- bockward stable (n2m), cond- (A),cost0(mn)

b)M=A* A 5bookword stable (cm), but... squares conditioning, cost 0(mn")
3) M =LU s unstable, backward stable in practice, cost 02s n")

d) solve (W=y (willy, implicit via reduction) Ibockward stable, condow/ pivoting, cost 0 (n2)
e) solve Uxxiw(bock-sub) < bockward stable, cost 0(n2
-

cost -mn+ 2/3n3
· Cholesky replaces step c) W

<' M=R*R (R new, upper triangular) all backwards stable

d's solve R4w=y Cy=R**y, implicit via reduction) I cost of Cholesky:"n"
e) solve RAW (bock-sub) Chelf the cost, exploits symmetry of M)

· Stability:Unstable. Squares the conditioning when (A)

large, or, when a good fit (small discrep soln) isavailable!!!

· Cost: -mn? +ns ( cost w/ QR)



· The Cholesky Decomposition: symmetrized (U (see lecture 23)

· Given Me(MM (square) that is

1. Hermition:M* =M

2. positive - definite: *Mx <0 k x 0

then 7 RE GN, upper triangular sit.

imj =(x,tit
· Fact: If M=A*A, Aegean full rank then M is Hermition

and positive definite.

· We will continue this story in HW 4.0.

·this completes our study of direct methods

going
forward will use iterative/optimization methods.



K6-EveMethods forts problems (and intro to optimization)

· Logistics:
· Project 1 due Wednesday
· HW 3 due Thursday
·HW 4 posts tonight, due next Thursday

· Goals:

·LS as an optimization problem
·general survey of optimization B system solving
· general survey of methods

·

convergence rate analysis

· Ex:

· gradient descent for least
squares

·Convergence rates, conditioning and scaling
· accelerating gradient descent (momentum Baccelerated 60)

· Preview to: Sloppy but cheap (SGO) vs. careful but expensive (C6(s)

· Least Squares as Optimization:

·

given Aeomen, men, full rank, b64m* gool

find x 6in minimizing:
e

domain is
f(x) =11Ax - b1z

all of C I

↓
-f(x)

=lAr-bln =(A1.- b!

· looking for : :f7, Ae. =Sithrar ofAbox

--ergf()3 SLAXS: -bi)" error in the

approx.

where f: D" -> IR. With row of A). x = b;

f(x) =11A + - b112



·Optionmore generally:

find -arguin3f()3, fi-l -> R

· domain: t objective: f

· nonlinear system: h(x):(wet.h...e-a
solve hi)-o] lineor system: hi(x) = [A-];- bi

generally, there are not direct approaches for solving
h(x) =0

in orbitrary dimensions if I are nonlinear...

· Ex: suppose hile) is a polynomial degree: I

of simplest hi is quadratic
· if degree: z, solving h() =0 is equivalent
to finding the roots of a degree im

polynomial (if m>3) impossible 2m > 4.

· convert into optimization problem: f(x) =11h(x)11

· Ex: fes=Ih(x)1p=(,Clhics/o)]
"

· LS: hiare linear, p=2.

· Classifying Optimization:

· domain : 1. is a pointsel > discrete/combinatorial opt. (CS)

2. CIR, l+R"=> constrained opt. problems

3.c = B" => unconstrained problem - LS problems



· objective:

1. crcityfuf: I is conver over a sets if

for
any X,,4zES, and any te [0,1

(1 - 1) f(x) ++ f(x,) = f(x)- +)x,r + xz)
Istrictly convex > for Leco,1)

· more generally:if I is cover our s

then Alconnercombof pointsin 3] couver comb of Alpoints;orit.
Goically be connect togaramba existent

I
strictly

B uniqueness of minima

·Ex: ifit is compact, of is strictly convexthem 5 a unique

minimizer (global)
· E:if I isbounded below, strictly conves => if I a

minimizer ofthen it is unique 5 LS problems when Ais

full rank.

of is locally conner, if I is convexover a set sc_

of is noncouverifitisnot globally conver

Itypically hard, admitmany local minima... control viable

2. smoothness offi how differentiable is f? I Step sizes

· what derivatives exist B where t key to controlling
the predictiveness

· how large are high order derivatives of local information

· LS problems have quadratic f: all derivatives exist

but they may differ

in scale...

· how to extend local information
...

local models, Taylor series ...

· Ex:expand f(x) about some iterate ex:

f(x) =f(x) +Xf(x)(x - xx) +(x - xx)"H(x)(x- xx)



· where tef(x)=(weeras-lineJackiej
f(x) =,f(x) +Xxf(x)Y(x- xx) +(x-xx)"H(x)(x- x) +0(1x -xx)

I

local quadraticmodel is takes the same form
as f for a us problem

· Optimality criteria.

· E: if it interior of C, f is conves on a neighborhood, st order optimality
S containing to then itis a local minimizer I criteria

if f(x) =0
as problem.

· E:if problem isconstrained of different criteria

(Lagrange multipliers, KKT conditions)

· Methods literative) for convexoptimization:

· idea!sequence of guesses to the sold to that get better

with each update

3x,3x: to - x, -xz -... - x

·typically update xp -xey using f(x), f(xx), H(x)...
use? F

1. history of iterates 3, history oflocal estimates > leads tomethods employing

"momentum"or "acceleration"

·pically. * **x+ SpEr, eIR"

· where Sit IR (step size) I choosing these

· where Ex EIR" (step direction) strologically

↑

· df, a direction Ex is a descent direction

if, for all sufficiently small s

f(xx +szp) =f(x)
-

descent step.



· order of a method is the degree of derivatives used to

compute Zp:
↓
requires 0(n) differences

1. if we only use Xf(x) 1st order (Gradient descent)

2. If e e e

=Xf(x), H(x) - 2nd order (Newtonor quasi-Newton)
Irequires O(n2) differences

· tradeoff? I'd order methods are faster
per step

but steps are more expensive B less - robust (require more controls)

· we can speed computation ofupdate to by using cheaper local approximations:

1. limiting the # of variables is that can change per subsample callsof Axub

update -> coordinate descent
I

2.
or, if

fas -.E.f.cs5f(x)=114s=Elbocessofsubsample rows of Avil

updote using subsets of fi at each step

· in either approach ordering of the subsets chosen

controls convergence rate

· often better to perform blockwise in a random

or stochastic pattern => Stochastic Gradient Descent.

· for LS: choose sampling of rows B cal's

bosed on theyrelative norms

· Stochastic Gradient Descent for LS.

· Convergeneotes: rate of which error 1IX-Xall goes
to zero

· ically: statementslike, 5 a constant(30 s.t.

IIlXr-Xall=C1xx-xxl-> errors decoy geometrically most iterative methods for

114x - xI *lX-x solving IS problems

I
convergence is controlled by thisconstant C.

for LS, depends on method used

and the conditioning of the matrixA

· def: a sequence 3xx3,s converges linearly if 11xx-xell=O(IIX-Xall) =-
first order methods

quadratically if (1xx-xx1l=O(1xx-12),etc. Ihigher order methods



Isdoy - 2023 -EveMefor LS

· Logists.
· HWY posted, due next Thursday

· Ges:

· The LS objective B quadratic objectives
· Gradient Descent:

· fixed stepsize

· exact line search

· Momentum B Acceleration for ill-conditioned problems

·AtCloss: surveyed optimization problems
· Today, focuson15

· Least Squares: given HED**, full rank, be" find it sit

** =argen,EllAr-ble

· domain: r =0

· objective: f: r + IR, f(x) =IHAx-bl =!(Ax- b)*(Ax - b)

=j(*A*Ax - x
+A*b - b*Ax +b+b)

=j(x +A*Ax - z(A*b)+x +b*b)
-

↑ Illb11

· view as special case of: M =A*Ais Hermilion positive definite (x
+Mx >0X xf0)

so f is convex

· general quadratic (conver) objective.

f(x) =I(x
+Mx

+2y+x +c),MeC* Hermition pod.

7 = DY, c EIR

· Ex: if fi-l- IR, convexof xx,analytic:

f(x) = f(x) +(f(x))Y(x - xx) +(x- xx)"H(xx)(x- x) +0(1x-x1

↑
ore + Y, =0 if x

1
Hesston:Iateeffect 3 M

is local minimizer

Hermition, positive definite if conver of Ax

· Mord: study optimization on IS objective
to study generic behavior of optimizers near local controls steps for and
i

minime, or, when using a local quadratic model order methods



·can also view as special case of system solving vie

optimization:

hi -1 -GM, hi--D, has: (i)
dim to solve? for LS: h() =Ax-b, p =

2

h(x)It i his -- list.
so, minimize residual? Ih,K) 1P 14,27) -01P so, minimize residual?

1[Ax],- b, 12

114(x)11p*=G14,xsP=ihnesID=Inst-o i
11h(x) 11P =11Ax-bl =/CAx).-bil=A!-

bel

! I I
Ihmcs/P (hmc)-ol ! /[Ax]m-bu

· choose p
to control regularity of f(x) =11h()/Ip*

and the sense in which errors are small (p-c, max error, p->0, # of constraints unsatisfied)

· When motivated by regression: depends on the error model in data

(p =2 ) Goussion errors)

· batching: only focus on subsets of rows/constraints or

subsets of variables of a time
...

·btch: only use variables X, for ES, constraints itC

minimize E(AX),-bis" over x=(E) or is fixed unless as

· Ex: S=E1, 2, 43, C =32,33, I X,

·jrans ii. t-bit-tE

8 lotegnewsmane is problem i
Ises

·

solving batched problems is the same as solving a LS problem sizes m=/2), n=/S/

forsmall IC1,15I use direct methods (oncyticanswers available for IC1:1 or 151:1)

· costO(21211S12-31513) per batch if direct, otherwise -> backtoiterative IS methods

· pick botch order/sets stochastically I stochastic gradient methods

I
convergence rate depends on sampling rule, usually not uniform over rows/cols)



· Shape of quadratic (IS) objectives:
doesn't change position of optimizer
-

· given f(x) =2 x+Mx +y+x +Ic

ILS. M =A*A,y*=-A*6,c=b*b for MEDY Hermition, positive - definite, invertible

Taylor:M=H(X), y
*
-Xf(x),c=2f(xx)

· minimized of Xx then: Vf(x) =0

If(x) =Mx +yg0Xf(x)/x
=x
Mxx +y =01Mxx=

-

y1xx= - my
psuedo - inverse
-

LS:M=A*A,y=-A*b1x= -Mty =(A*A)"A
+b X

simplify by shifting tobe centered ofXx...

-(x- xx)+M(x - x) =x+Mx -xx)4xx
=bax +y+x +d

Mxx= - y

-f(x) + some constant...

so:

f(x) =(x- x1)+M(x-xx) up to additive constant-
0

WLOG, assume X1 =0 Celse, shift coordinate system) x -x

· Mis Hermition so it is unitarily diagonalizable, has

real eigenvalues X,(M) and I engenrectors V,(1) s.t.
: M=A*A, if A has su

A =UEV*then:A** =V s*V*M =V1(r)I4 +
=v-

i
so _(M) =S*(A)S(A)

and is positive definite so ,(M) > 0 *geCl,n]. ... b,(M) =G(A)20

· then f(x) =I+*Mx =Ix
4X

=
1(M)V+x

-(*j..fas: far,scan,nelength of projection

=,x,(r)(1v,x of residual onto u, square

lengthof projection
of xontov, squared



·Ex: 1,(M) =6,(A) =s,v, =(i) xz(M) =6z(A)*=5v =[-!]

· dong V,: · dong V,:-
=

ll,Y
11v,x 11 11V, 4 x11

1, (M) =6, (A)large =f sensitive along v, 1, (M) =Gz(A)" small => f insensitive dong V2

· curvature along Y, determined by 3 (M) (if I, (M) 30 curre up, to flat, so carve down)

(M p.d.)],(M) < 0 <=) f convex)

·plot f(x) using isoclines (level sets]

f(x) =c =Ix+Mx =c =Ex(r)()y,4 x12 =c
· Ex: 9 IV,*xl+ Illvx =2c

... equation for an ellipse! .· principal exes =v, V,,.es of relative length (x,(M) =(6,(A)

· ty f(x) = =>9lv,*xll+ ylIv,*x=1

Vi
if: Vzt V,

↓
. x (IV, =) v, 4x =lk), v2

+x =0 so 9lx=) so (kl = Y3(- Y6,(A))
· x11X =3 v,

+
x =lx, V,4x =0 so IIE) so I =2 ( =Y6y(A))

f() isa quadratic bowl

centered of a melliptical

(A) .....

I is oclines:
1 tosingular vectors of Aitmnist· principal exes are II to eigenrators of M



·Iterative Solution: f(x) =5 x
*MX where M= A*A (xcentered so xx =0)

· sequence of iterates (guesses of soln):

↑"H x1- x1-... approaching the minimizer Xx = 0

↓search direction, descent direction if

via recursive update rule: x(+) =x(k) +5
,
z) f(x(k+x) < f(x(k)) for

↑ sufficiently small Skstep length

study convergence rate of 11x*11 (error x- xx)

f(x() (objective)
11 X f(x)))) (optimality, 4f(x*) -> 0(

· Itorder methods: pick it using Ex3,Ef(3,0, and Exfrxis3,.

converge linearly:1x** 11 =0 (11x*11) = C11x41)

so: IIx II? C* Ikoll (typically fight for worstcase x)
I

depends on method

errors/objective/gradients decoy geometrically in C. slow if I close to 1.

· In order methods: also use H(e)],.... achieve quadratic convergence: Ix**-XIll =0(II- xall)

... much faster per step, but: steps are expensive (O(2) to form H, O(n) to

use it)

too expensive per stepin high dimensions

· most iterative methods for LS one 1st order (objective is already quadratic

· Gradient Descent (for LS): greedy search direction...
-=-Def(x)

· idea: pick ') to be the direction of fastest descent...

z"* (1 - Xf(x)

then:X
(+)

=x() - 5X-f(x)) 56.0.generic -
.

f(x)
· for LS: Xf(x) =4 x

+Mx =Mx

so; +(k+ =

x

1)
- 5x(Mx) =(1 -5m) x1).-6.1. quadratic

I A* A for IS

· Question:how to choose the step size sp?



· Question:how to choose the step size sp?
· Sithadfrtme (convergence rate will depend on "learning rate"s)

· if Sks then x
k+)

=x - sX-f(x1)) =x4 - sMx=(I - sM) x
1

So:

**=(I-sM)*x". to optimize convergence, picks tominimize

mr511 -5X,()13 =mxx311 - 56(A)43

optimals is chosen s.t.

2

11 -s Xmin(4)) = 11 - 51mox(r)) =>s=

Ya+bmin(rs*A)+AS
(note: optimizing s requires spectral info ... can be expensive to get, may require "direct"analysis ...)

then: Ix(k+)-xellCIx-xll so lx-xll? C* 11 x- xell

where:

= Sees-mine.GRASS=1 - O(/(r) =1- Ose
-

very slow when ill-conditioned

· so, for fixeds, the best case method (choice of 5) has worst case rate C: 1- 8(/(A)-2).

loud the bound is fight, achieved for worst-case/adversarial x(

· choose adaptively of each step.
-=-Def(x)

· Line Search: if I'll is a descent direction then 7-s sufficiently small sit.

f) x(*)+szi))<f(x))

.

f(x)
· pickings is a 1-D optimization problem...

· solve approximately by booktracking... fr
· start my large s

· iteratively reduces (backtrack) until

relative to f(x). -fame
is

f(x)+sz1)) is sufficiently small

>

S

· Exact line search: picka to minimize back track

f(x) +S-t))

Igreedy step size)

· a: Skergmin 3f(x+
sz)3:orgminEf(x)- Xf(x)3 g(k)

-

-(k)
+

yx(k)()
- 14

x
f(xx51)2

· for f(x)=5 +*Mx,Xf(x) =Mx =) sxxge*g



· 6P w/ exact line search:

x(k)
+

y2x(k)
↑(+) = (1 -

5
xM)x) where S = xx)*M3x
-

implementation:given x*
no need for spectral info

(i) compute g(k) =Mx(k)

(ii) compute ofIgi3/2, B =glts*(gcx)//nofice: sole an invest problem Axxol

(iii) Set = 4/1 using only forward multiplication by

(iv) x
(k+ =

x
14)
- 5xg(k) A and A. Cheap if A is sparse.

·

using a greedy step can speed convergence
but
...

·

Convergence is still linear w/ Ix**llC11x*- xx11

and

C =xmax(M)
- Xmin(M)

=1 - O(/ECMSt) =1 - OC/ECA)

and is achieved for adversarial/worst-case input.

.afa,1ma(M) +dmin (M)

is the same as for (best) fixed step-size
.

f(x)

· in worst-case, no better than fixed step rule... 6.1. follows a "zig-zag" path...

·Worst-case xo) is xP) parallel to min (M) V, +xmaXM) Ve
=GCASV, +6,CA)V,...

· If Ais ill-conditioned (CA) is large (ECM)"=/ECAS" very small,

so C is close to one. Converge very slowly,

· the issue is scaling, if A is ill-conditioned fle) is poorly
L Iscaled, for more responsive/sensitive to some variables than others well scaled

·
as a result, get large gradients pointing in almost entirely

the wrong
direction!

· zig-zag moking many over-corrections to the sensitive variables

while making extremely slow progress on the insensitive variables!!

· the worse the scaling the slower convergence. L a



· Momentum B Acceleration:(avoid zig-zagging)

(Po(yck)
· Momenture: incorporate post search direction intocurrent search direction

(Nesterov)

· Acceleration: lookahead along past search direction toevaluate gradient

· W/ optimized parameters converge linearly m/C = 1 - 8(((m>"z) =1 - 0((AS)

(vs. 6.0:1 -0(( (m)) =1 -0(((A)-2)

· better, converge of square roof of conditioning of M, conditioning of A

· still slow if
very ill-conditioned...

· Question: Can we do better?



Week 7 - Iterative Methods and Eigenvalue Problems

Iesdoy-2023 - Conjugate Gradient Descent and Iterative LS Solvers

· Logistics:
· HWY posted, due this Thursday
· HI'sposted,due nextThursday

·Gods:

·

Improving Gradient Descent:

· Momentum and acceleration
*I near optimal **

· Conjugate Gradient Descent.

·Iterative Methods and Matrix

Polynomials
Coungay $ Conjugate Boses

· Minimizing the residual over subspaces
·Conjugate Gradient Descent

· GredientDescent isslow, sim, minimize f(x) =(x-x)Mce-x) for M symmetric, positive definite

for LSproblem: M =A*A, *
*
* (A*A)-**b

· lost weekwe saw that60 converges slowly when A or M

are ill-conditioned,

IIx-Xallz! C*IX) - xellz

where:

C =dmax(M) -buin(M) =1 - 0(((m)") I>max(M) + min (M)
CE1 when ill-conditioned

=(A) - 6(A) =1 - 0(((A))
6mox (A) + 6n (A)

· Momentur B Acceleration: (avoid zig-zagging) try adjusting our search direction ...
· Momentum: incorporate post search direction intocurrent search direction (Pokok

+(+k- x() +Sxz),z= - f(x+txz(k-1)
S +, =0

· Acceleration: lookahead along past search direction toevaluate gradient (resteror)

· WI fixed parameters converge linearly my optimal C = 1 - 0((E(m)"z) =1- 0((A))

(vs. 6.0:1 -0(( (m)) =1 -0(((A)-2)

· better, converge of square roof of conditioning of M, conditioning of A

· still slow if
very ill-conditioned... can we do better?

· But, the optimal momenture method w/adaptive parameters converges in exactly a steps!

· Question: Can we do better?



·how??

·given? (k+1) =x() +5,E)

z(k) = - X
=
f(x(k)) ++xz(k

-1)

pick tosit. the sequence of search directions

z(0) = - Xxf(x(0)),z,z(z),...

die all "conjugate"(tm)

· Lef: given ME DV, Hermition, positive definite · Def: we say us and ware conjugate

then the product (u, v4=eMu if i tv. That issu, vn=nTMr =0.

is on inner product and induces a norm

on 4", Hally=su,n3m= eMe

· sim towork at conjugate search directions (1 under (in)

· note: can build a set of conjugate directions

9,92,93,0

from a sequenceof proposal directions

V,VEIVs,...

sit. Spon (9,92,...9n) =spen(V., ... Vel via Grom-Schmidt using <o,m

· Il to v,-axis
I<9,,9m= 11911m

· the ensuing algorithm is the momentum method we adoptive steps:

x(k+x) =x() +Sxz)

z(x) =- Xf(x (r)) ++rz's
that minimizes the objective some constant

f(x) =I(x*x)M(x) =21Axbl1 +c

overall possible choices of sit for all KG[1, nJ.

· moreover, only uses ty,m Ct,0 if (<k-1)

... only adjustsleft) by lost search direction

· So, to derive, let's study the sequence of objective function

values and choose sit to minimize the objective of each K...



· let f(x) =I(x- xx)"M(x -x1) =E)Ax - b) +c

where M=AYA, **(A*A)"A*6

Xf(x) =M(x - xx) =A*4x - A*6

· let'sstart my just Gradient Descent:

x(0)

I
x
(
=x10) - 5Xf(x(P))1x"=40) - 5,M(x10)- xy)

I
-12) =x") - 5,Xxf(x))1x xx=

x! - s,M)x!- xx)

error: y(k) =x14) - xx,Xf(x) =M(x14) - xx) =My

y(0)=x(0)- Xx
I

y(1 =xx- xx=(x1%-xx) - 5Xf(x(0))1x"=(x0)-xx) - 5M(x10- xx)

y() =y(0) - so My!0) =(1 - SoM) y (0)

I
y(2) =y, -- s,My() =(1 - 5,M)y" =(1 - 5,r)(2 - s4)y(0)

=11 -(50 +5,) M + so, M27y

=[M*-(5.ts,) M' +soS, MJ,0)

y(2)a,M'+ sos, MJy10)
P,(m(s)

Pz(3/5): 3"-(30+5,)3'+ so,3

I
y(k+1) =y(k) - 5,My(x) =(1 - 5xM)y(k)

=Pr+,M/s) y(0)

Conclusion: error of step K, y(k) =x*-**

is a polynomial of degree K in M

~/ coefficients determined by So,,...

times y(0) =x 10)
- x

·y(k+ =p(M(s)y(0)
when optimizing over

Px(31s) =(1 - 5,3) 3 the choice ofs

the goal isto

make 1/P,(MIS) 112
as small as possible

11 yc112 =11P(MIS)Ila 1y1II,
It
istight



use momentum:

y(k+1 =y(k) - 5xz(k)
z():fee) res

My(k)

then: some polynomial degree K in M

-

y(k+1) =p(415,t)y(0)
(I +4,(5,t)m +((s,t)12+ ...(,(,t)n))y0)
always just I not cols,t)I since 210= -1ef(x) =My(0)
I I

((k1 =y(0) +((5,tMy10) +c(s,t) Mpgcos -... Cs,tMYycosI I

=yc0s+/cosicos... acost (int
1. We'd like seventually) (m, nicos ... Myc]i(s,t) =-y(0)
for some k

2. y(k+) =y(0) +span E My, M,c0), . . . M*,}
nee

1, )M, y(0) ="Krylov Subspace"

· Et: if M has a distinct eigenvalues, then

for almost any inputvectory(

dim(/2,(M,y(0))) = min(k, n)

thensince MeG*, M'ye KY, so M,yel"

So, if In

x4,y103D forkan, (aM,y)-D.

dim ((,(M,y)) =n

·

so.... after n steps (2x)M,y):G

thus contains any vector in K

in particular, itcontains y (0)...

then Ia coefficient vector s.t.

e.
x= xx, solvein a steps.

thus, we hope

intheentirefor
yo



·d: y(k) +y(0) + (2x(M,y() ).space of possible errors

left over after asteps of a momentum method...

for kin it's possible to find -y10e/x(m,y)

thus to solve the optimization problem exactly.

·ityfor each stage K:Momentum method my sit is optimal if

y(KH):orgmin E f(y)3:orgmin 3' y 'My 3
y (y(0+(,(m,y(0))yey(0)1/2)M,y)

·given a conjugate basis for xM,y'),Q=59",9',... 93

it is possible to solve for y(kt) exactly ...

· Suppose Q'*=Eq"?...qI3 s.1spen(Q) = 1M,y)

and g") Lng"if its

y.(k+) =y(0) +(2x(M,y(0)) =y(0)+0,9" I y 1k+= E,(B,+,9+ Exs9'sy(0)64" =((M,y(0)) =2,9
if the goal is to make

yck+1) as close to 0 as possible

then, choose

&1-B,...

· Suggests on outline for a method:

run 60+momentum w/adoptive step sizes:

x(k+)=x4+Sxz), z=- Xf(e) + tes E

wheres and I are chosen sit, the errors satisfy
- Syz(k),z(k)=q(k)
-

y(0)=x10)- xx,y(k) =x(k) - x4
=ref93 =y-E,,a* =yex-Bq

where! *

best possible for all itrative methods using
momentum

· Q=Eq,q(2), ... q(*3 is a tim basis

to , (M, y') =3 My, M2, ... M4,3= spanEYf(y(), Yefly"). ... eflyk-3
· is satisfies y(0): E,B,9" (coefficients ofexpansion of initial error

ontothe conjugate basis)



Thursday - 03/09/2023. - Conjugate Gradients and Power Iteration

·

Logitising poste

· HWY due tonight
·HWs due next week

·Goals:

·Conjugate gradient descent

·Lost Class: given
f(x) =[(x -x)*M(x-x) =I//Ax- bl,AtCm+ full ronk

M hermition positive definite

where M =A*A,**
CA*ASA*b

unknown

thenon iterative momentum-based method sets:
- M(x - xx) =- (A*Ax - A*b)
-

↑
(k+=
x
*)
+S,Z) where --Def(x) +xtgzs

sincludes all 60 methods by setting ty "0Y((k)
has errors: y(k) =x() - X1, (f(y) ==y

*

My, Yyf(y) =My)
contained in the sequence of offine subspaces:

-Y

where

y(k) cos
+ (x(M,y(0)

I
i.e.y(k) =y(0) + E(y(y(0)((s,t)

↑ -
initial error the space we are moving where the coefficients a (s,t) are

k,(M,y(0) =span3 My, M4,10), ... M4,}
determined by the recursive rule

for s and to
is the nth kylow subspace.

· Fact: if M has a distinct eigenvalues, then, for almost any y(0)

kn(M,y") = D" so ye/nCM,y') and, for ally, y't/,(M,y) for some K=n.



· then, any momentum method satisfies:

f(y()? orgmin[fly)3
y(y(0)+(k,)M,y(0)

and the best possible momentum method would set:

y(*):orgmin[fly)3 thus would achieve y(t) =0 =) x
)

=Xx

y(y(0)+(k,)M,y(0) for some In (provided M has

simple eigenvalues).
·So, our target is to set/solve:

y(*):orgmin[fly)3 in on iterative fashion (must achieve implicitly
y(y(0)+(k,)M,y(0)

via careful choice of send t

· write:y(k) =y(0) +(1,1), m,.... yo
and try to solve for the coefficients ...

· Problem: the basis 8'*:3M",103, is extremely ill-conditioned...

(why? If M =VAVY, where A:USU, 1:8*

then rap"

sotein
M =(v-AV) (VAV) (vAV)X...*(-v)

=V-1 Y* =V dig(d,, b2, ... ?)V* =2,x (r,vi*

so M'*V-AV*, =(X!(,*y(x) vi
I

↑

magnitude will either to as

1,(1:1 * iss so: if 1,31, or 5 0 if 1, <1...

+, 1'y =(v,y)4,Llyas ve
<1

so? Is Mycos converges to (r.*,) v, ot 0(())

thus: as - large, the columns ofMy become a parallel)



·

so, need a better basis for x)M,y)...

·dea: leverage orthogonality ... really, conjugecy (orthogonalityworst. M)

·recall: ·Lef: given MEDV, Hermition, positive definite · Def: we say us and ware conjugate

then the product (u, v4=eMu if i tv. That issu, vn=nTMr =0.

is on inner product and induces a norm

on 4", Hally=su,n3m= eMe

· Let Q=[9,9',...q*] be on tm bosis for CM, y")

Irecall, can build by applying 6.5. toany sequence of

proposal directions:v", v), ... Sot.

span)3 v3,,) =(,(M, y(): spen(EM'y"3,,)... Ex: let vis=My
then! or =ns,cosyM'y

94 is II to vis =- =v4 -iein glit+m,

· Then: 1. Conjugecy: 9"1n9" Fit, so X9"qumqlis*Ma's =0

2. Change of Bosis:if we /,(M,y") for some K then Icoefficients

w =(w,,we, .. . wx] s.t.

W =0) =ws,"I
and, WerM, y'), w=a**

we can recover is from w via inner-products:

2xg(s, w3n =[qa*) =xq,,9
=I.egis=w, qis,q'sm =19'lls

=0 unless i

so: =19s9", wm =

9*Mw

q(*Mq4

· then: yik)=y(0)1YYCs,H'sforsome Y, determined by, and t

and: y(0)-ay?" where y:'ll *9" y'*Ym



3.Objective: f(u)= I*Mw

if w =0** then:

f(x) =I(a=)
*

M(Q))

- I(,,q()
*

M(w,q(i) =I,,,(q(*Mq()
= : <ges,glist119"ll Ins

so, if we normalize the basis... -
=0 unless inj

· set q( st. (1q'l= 1

then:

f(w) =lws!=I l1w)!"

· so:f(y()) =f(y(0)+E,y,q()
=f(,,"qs + ...) =f(,Y!+)9" +Exq')
=(l+Eas

1
control w/s and t

↑

fixedby yofixed by y(0)

· so: argmin(f(y)) is achieved by setting:
y(y10+(2)M,y(.)

y=- yc0) for all k

· aim to choose sitsuch that?

Y(*(s,t) =- 4,0)
then? I

=(q?y(0)n

y*=orgmin (f(y)) and f(ys) =Gee,and f(ycK)) =0 for some kn

+ -

optimal over all momentum methods so x*=xfor some kIn...

solve in finitely many steps.

4. Iteration: y(*)=y(0)-Y,09" =E,9-g=m*

=y(k
- 1)

-y(0)q(k) =y(k
- K
- (q(k),y(0))y9(k) =y(k

-1)
- xq(k),y(k-1)yy9(k)

-

=Xq(k)y(k-1] Since y(kr)_Eg
so: (k)
/g') sutheory
I and

I
Y
(k-1)
- [q(k),y(k-12yq(*))practical iteration: ((- x)=(x(

-x
- x) - (q"?--x49)

So: x(k) =x(k-1) - (q(k)*M(x1k- - xx))q(k)

=xCk-K - (g(k)*(A*b))q(x)
Xxf)x(k-x)



· So, practical iteration rule:

given A, b
=M=A*A,

Yf(x) =Mx - A*b) "residual"

given x() iterate:X-f(x) =Mx- A*b =r(k)

x(k+1) =x() +S,z(k)
where?

1. search direction: 7(*)=-q(k) < 4th conjugate basis reater of aM, y)
2. Step size: 5x =x g(), Xf(x) =g(x)*(Mx(k) - At) =q(k)*f(x)

-

·if I's are notnormalized, residual rit), notice: X(k) =x! sx-9(k-1)

Si
=(q(k)*r(k))/(q(k)*Mq(k)) Mx(k) - y

=(Mx14
x
- y) - 5x-,Mq(-)

=r(K-K) - 5x,Mq(k-1)
· Substituting in for the residual.

of stage k =>have x 1), (K-1), sp-I
· introduce z(k) =q(k) < don't know how yet

(i) compute Mq(K)1 I(ii) compute r(=r(-K - 5p-1(Mq(k)) =Xxf(x())

(iii) compute: q(k)* r(k)
Sx:Xq(k), r(K) 1q(K) 11m =

g(k)*Mq(K))
(iv) update:

+(k+1)=x()- 5,9()

·almost a full algorithm...
haven't specified how to compute the

conjugate search directions q (*)...

· recall: given
Q
(*

=3913,we only need

a proposal direction v() with a nonzero

projection onto x//x i.e. onto My

· from 60/momentum: propose vi =Xf(x1k
- 1) =v(k-1)

=My(k-1)

some polynomial order (1 in M

ene
we've already shown that: y(k-1=p(M(s,Hy(0) + y(0)
So?

My(k) =My(0) +MP.)MIs,Hy10): some polynomial order in M

So: vik) =X-f(x) =r(k-/2x)M, y)/(m,1,y)



· then, orthogondize:
4f(x)) Z's

e

q(k) =v(k)-8,inn

z(k)

but 2(k =Y-f(x+-) =
rik-x

=Myck-K)

and
y
(K-1)

= ExY:09("S

so <q(, v43m =494, Mylar=<Mq,EY: glicYm
Isk, es

so Mq'se/, t toEa
unless

=K-1 ...

so <g', v4 <m =0 unless =K-1!

t =0 unless =K-1:

so:

4f(x)) Z's

e

q(k) =v(k)_,E,=ne_genneken que
Jq(k-1,q(k)

= Xf(x)) - tx,z(k) 5 listep momentum rule!

· Conjugate Gradient Descent:

· input A, b, xco)

· compute M=A*Ai · compute Ax-b =r0=A*(Ax- b) I· let 910) =0, So =0

· iterate over K =>have x 1), w(K-1), S-1

(i) compute (q(k-1), r-m/I1q(k-//m
ondize

(ii) letq(k) =r(k-K -(.../...19(-1) Zorthog
(iii) computeMq(K)

(iv) compute ((=r(4-1 - 5p-1(Mq(k)) =Xxf(x())

(v) compute: q(k)* r(k)I (vi) update:

Sx:Xq(k), r(K) 1q(K) 11m =

g(k)*Mq(K)) Bo
+(k+1)=x()- 5,9()

-



Week 8 - Spectral (Eigenvalue) Problems

Isday -May9th

·

Logistics's due Thursday
· Project I post thisweek

· Reading posted

· Gods.

· Eigenvalue and SVPproblems.
· Characteristic polynomial -avoid, extremely unstable

· Complexity
· Methods.

· Tools: MatrixPowers B Rayleigh Quotients

· Power Iteration
· Inverse Iteration
· Rayleigh Quotient iteration

·

SeeProblemstopeer then an eigenpoir of A. et

sit.

Ar =1v

and, if Aadmits a linearly ind eigenweater

V =(vjz...in] then:

AV =V
-1, =dieg(t,,,... )

A =V
-V".

· eigenvalue problem -> extractsome subsetof the eigenpairs

(6, v,)

... decomposition -> recover all (t,y) for 1-1, ... n.

2.Singular value problems: given any ACDMA I a SDof A

· A=U3v where U, V are unitary

and I isdiagonal, real, nonnegative
·

recover the singular values (vecters: (6, 45, is



· Converting SVP to eigenvalue...
·

given AGGM....

· idea: compute: M=A*A, given A:USV*

M=vgtav- v(at)jatre

so eigenvectors of M: y (M) =v, (A)

eigenvalues of M: 1, (M) =6,(A)

or, compute: M =AAY, then...

eigenvectors of M: v, (M) =4,(A)

eigenvalues of M: x,(M) =6,(A)

usually avoid ... squares the conditioning

· ded: build H =(8* I notice It is hermition, (man)x(m+n)

then, the eigenvalues & rectors of H E) the SVP of A

n =EJ =(=fl. i
the eigenvectors of H, col'sof
have as blocks the singular vectors of A

and the eigenvalues ofH are (in magnitude) the

singular values of A.

· this is stable...

so, if we can find eigenvalue decomp -> perform on SVP.

· Problem: given AtDith how to find eigenpairs (v,, b,)?



· Finding eigenpoirs:
V =0

·standard story: Ar = (v => Av-x =0 =(A- x1)4
=0

thismeans null (A-dI) is nonempty
so

(A-XI) is noninvertible (Y def(A-11) =0
-

polynomial!

· theeigenvalves by are the roots of the

characteristic polynomial:

p(X) =det(A-1I)

· then v enull (A-1, I)

· there is no analytic formula for the roots ifns5

Tif ns5 then there cannot

·maybe find the roots numerically... be a direct method...

but, if A is new then p(s) degreen
roots of on

ith degree polynomial

are extremely sensitive to its coefficients

· root finding for large n isextremely ill-conditioned



· Tools:

1. Lowerstrices:

·a matrixpower, A*for KEE integer is Atimes itself a times

· Ex: A!A*=AA, AS =AAA, ... 4-

orise naturally in dynamical systems is numerical methods.

if Aisdiagonalizable let'stry converting into the

zigenbosis, think aboutA=VAV

then:1. A
=AA=(V =

AV-) (v-v
- )

= V -v-v -r -
-

=V
-

11 - 1
=V -

1-

digst, .... In
A=V=

12v
-

Ieigenvalues of A? Ceigenvalues of Al
"

2.A* =A A =(v -v
-)(v -v-1)

-V-v
-12

-1
=v 131-1

-

I dist, 2....
A =v13 -
Ieigenvalues of AP Ceigenvalues of Al

K. A*V 114-1
1,
P

- xy

dig 3x,*, e,...

consider:A4x =v=vk =v
=14y =,E(x,4y)!

-
--

I Iy = coordinatesare dominated -it
i

eigenbosis by the largest
eigenvalue (in magnitude) I

as k -> co

this leads to the power method forcomputing eigenvalues and eigenvectors



• the power method : idea
,
start w/ an initial vector ✗

◦

then compute ×
,
= A ✗◦

✗z= A
>
✗◦

= Ax
,

]
recursively compute powers

↳ = A3✗◦=A✗> § }: :

!

↓
.

✗
*
= A
"

✗
◦
= A- ✗

µ ,

v. = [!]
,
vz=%H

,
1=2, ✗g- %

ÉA%

✓ Ax÷!
anas.ws . "

⇐ .

Aka converges to

a vector parallel to v ,
v u

to avoid ✗
µ diverging to as as K→ as (largest t > 1)
or converging to 0 (largest del )

normalize at each iteration :

I apply A

Kth step : w = A ✗
K L normalize

✗
K+,
= L w
Hutt 2

/

n

"

- ✗
,I 't i t

'

v

• this idea leads to a practical numerical algorithm for

computing eigenvalues and eigenvectors , works for large n
,

does not require finding roots of a high degree polynomial,

much more stable than characteristic polynomial. . .

◦ why? b/c the algorithm is inspired by the actual

utility of the decomposition .



2. Bayleightents:

· how can we estimate eigenvalues from estimated eigenvector?

· Suppose VE C" is ~ an eigenvector
then, wont to find a scolor & sit.

Av

optimize &:

&=ergain 311 Av-cvIl3=agmin 3 v*A*Ar-20vAr + ev- 3
-

f(0)

to minimize: (yf(0) = - zv+Ar +20vkv =0

requires : =
v*Ar

V*V
· Def: the Rayleigh Quotient r(A,r)=

(is the nearest approximation to an eigenvalue

of Agiven approximate eigenvector v)

· Facts:1. If v is an eigenrector of Amy eigenvalue
↓ then: Rayleigh quotient of on

eigenvector returns on

r(A,v) == =1 = X.
I
eigenvolne!

2. If v is on eigenvector with eigenvalue 1

then, given v =V+ Sv:
dv =v - v

rCA,w) =x +0(15) ( r(A,-1) - r(A,) =0(dr-rI)

as II sull-> 0. quadratically accurate!

(why? because Xr(A,x)(x=
=(Ax - r(1,1)x)k

=

=(Av - 1) =0

if Av= Iv.

· put these ideas together to derive iterative methods

for approximating eigenvalues and eigenvectors...



· Iterative Methods: Assume HeD", hermition (hence diagonalizable?With simple (non-repeated) eigenvalues

1. The Power Method:

1. input A, v' / IIv1,1

2. iterate until stopping

(i) w =Av(k
-1)

·apply A (A* -> AY) I unlike the characteristic polynomial

(ii) r(K) =w/IlwIl · normalize -> estimate eigenvector find eigenvectors first

(iii)(() =r(A,y(r)) =-(x)*(A -(k)) · estimate eigenvalue
uses natural properties of eigenvales/rectors

-

in efficientimplementation,

store for next step

I
firstrowofhis not

· Convergence: Suppose 1,1311,121:10 Vis 1 and y = (Vc],o
then:

11- (=V,311 =OCY)") and 1x*-X.1:O(())
(CK) -> v, *-> J, geometrically ofrates Malis,and (i'/ib,1)"

errors converge linearly, Ilvik)-(143I1=Glluck--(143Il for G -> He,1)

· so, Hz/1,1 =ratio of largest eigenvalues determines the
convergence rate...

· Why?

recell: A* =VX1 =Exist
v() =A*- (o)

so -CKS
&,E, "(N-,), Y =1,(x+se(ut], spen(30,3,11)

converges to 0

of rates (Yx,)
· Problems? 1. converges slowly ifIz11,1

2. only finds (V,b.), the largest eigenpair...

· Q: how can we find a specific eigenpair?



·do: matrixfunctions... if f(x) is an analytic function D - C

S. t.

f(x) =x (power series)

then

f(A) =A
if Ais diagonalizable then A:VAV", A=Vv"

So

f(A) =.v v=v). fJV=Vf()v
=V diag (f(x,), f(xz), ... f(xn))X

· pick of tohighlight a particular engenvalue

· Ex: f(x) =(x- n)" for some meK

then:f(A) =Vdiag((X,-n)" (12 -m)".... (In-m)")V

=[V dieg (X,-M, bz - m, ... An-m)V-1]

=[V( - mI)v-)

-

it.........rese
=[V-AV-mI]

then:

=(A -mI]- ns; s
1A-nI)"has eigenvalues,im) provided m+b Ys

so, A-mI is invertible ifmyb Y s

and

Mex511(A -m1)-B =mxx311)-m313= (mn313(A)-m13)-we

eigenvalue closest to e

· notice, we can apply power iteration to (A -mI)"

by implicitly multiplying by (A-nI)"... i.e. solving

(A -mI) -) & v (k
- 1)

↓ implies

2(4)0(A -mI)"(k-1)

...
leads to inverse iteration



2.Inverse Iteration?

1. input A, v' / IIvoI,=1, m a guess ofdesired eigenvalue
2. iterate until stopping
*(i) solve (A - m1)w =v(k-1) ·apply (A -mI)".... raise the power

(ii) r(K) =w/IlwIl · normalize -> estimate eigenvector
(iii) I) =r(A,,(r)) =-ie)*(A-()) - estimateeigenvalue

* (i) is expensive, costof solving linear system against (A -mI)

... but, if reduce A-mI -> LU or RYR (cost:O(n3))

on 1st iteration, then on later iterations just use substitution

Scost O(n?), some as applying A...)

so, really only a l-time cost.

·Convergence: power iteration w/ eigenvalues (1)(A) -m)...

· Suppose setto-m1=11.ml F itsork and y= (v],to
then: next closesttom

11a- (=V,311=OCIst") and I- x51:OCCt)"

· Converges quickly if miss and is much closer to is

than any other eigenvolne

· Can find (V,, b) st. (by-n) is minimized

3) closesttom)

· Q: howto pick m? Can we updateof a better guess

to an eigenvalue as we go?

·

yes!use a=Dik)...



3. Rayleigh Quotient Iteration:

1. input A, v' / IIv1,1,

2. iterate until stopping

(iii) y(*) =r(A,ycks) =nes*(A-C)) · estimate
engenvalue

V

*(i) solve (A -x*1)w =v(k) ·apply (A -mI)".... raise the power

(ii) r(Kr1) = w/IlwIl · normalize -> estimate eigenvector

Inow "(i)" is expensive ...) changes

my every step so need a new reduction

everytime... cost O(n) if use direct methods

·Convergence:Rayleigh quotientiteration converges tosome

eigenvalue/rector pair for almost all v).

Denote the pair (V5,Xj). Then, in the

limit of large K, convergence is cubic-!!! crazy fast:error 4o -> 403 ->409 ->4027

in the sense?

Ilv+)- (IV)1l =0(11-x- (IV)113)

11+ - xj) =0)(1(+x) - xy))

· Why? by when vivo then 1=r(A,r)) = by a quadratic errors

(11) - 35 =0(11v) -(1Vz)1/2)

then the inverse iteration update to
go

to vikt)

is lineor?

1vk+ - (=V,31I =O(CY) Ivr_ (=v()
Inext closest

where 115-1*)-> 0 (Iv- (=Vj)1IY)

!3 - (1-n5/be - 6,13:0KK)

=(IIvix_(1vj(II)!



usdoy - May1 - EigenMethods.

· Logistics:
· HW 5 due tonight
· Project2 posted, due Friday of finals week

· Goals:

· Rayleigh quotient iteration
·Simultaneous iteration

· The QR algorithm

· Shifts

· Preprocessing (reduction to upper Hessenberg)

·recall from Tuesday:

1. Rayleigh quotient r)A,v) =V
*

t
is quadratically occurate to b, if viY

2. Power iteration:A*-co)yvikss v, if 14,15,

yjs1 and converges linearly,

Iluck+ - (IV,311 =0( Ilv*-(IV,(II)
So ↓

second largest eigenvalue
(v)-(1v,11 =0(((t)*)

3. Invest iteration; (A-m1)-*10-CR), vs where aestheticenF i, L+5

converges linearly,

/12+1) - (2V,)11 =0)!! Ilve- (Iv,)11)
So

11(x) - (1511 =0 ((mi)")
fast if a much closer to

one eigenvalue than any

of the others...

·idea: can we use r(A,r)) to iteratively improve m?



3. Rayleigh Quotient Iteration:

1. input A, v' / IIv1,1,

2. iterate until stopping

(iii) y(*) =r(A,ycks) =nes*(A-C)) · estimate
engenvalue

V

*(i) solve (A -x*1)w =v(k) ·apply (A -mI)".... raise the power

(ii) r(Kr1) = w/IlwIl · normalize -> estimate eigenvector

Inow "(i)" is expensive ...) changes

my every step so need a new reduction

everytime... cost O(n) if use direct methods

·Convergence:Rayleigh quotientiteration converges tosome

eigenvalue/rector pair for almost all v).

Denote the pair (V5,Xj). Then, in the

limit of large K, convergence is cubic-!!! crazy fast:error 4o -> 403 ->409 ->4027

in the sense?

Ilv+)- (IV)1l =0(11-x- (IV)113)

11+ - xj) =0((14) - xy))

· Why? by when vivo then 1=r(A,r)) = by a quadratic errors

(11) - 35 =0(11v) -(1Vz)1/2)

then the inverse iteration update to
go

to vikt)

is lineor?

1vk+ - (=V,31I =O(CY) Ivr_ (=v()
Inext closest

where 115-1*)-> 0 (Iv- (=Vj)1IY)

!3 - (1-n5/be - 6,13:0KK)

=(IIvix_(1vj(II)!

· Rayleigh quotient iteration finds one eigenpoir... how do we

find all of the eigenpoirs of once?

·idea: run iteration on multiple input directions

of once...

· from now on, assume A is diagonalizable



·Simultaneous Iteration: let'srun power iteration on many

inputs simultaneously...

·idea: inputvos_(fiesiss...e*) e initial guesses to

eigenrectors
iterate: W =AV)

wet =[wawn witwe... welen I

then 1v11:1 and v 0 A* v,0)

· Poblem: all YC) -> V, (dominant eigenvector)
Since

*** =W (smVeaV(....V
I

·soln: if Vick , v, then, by"Keeping YI)"away"from
Y(k), we hope y,1,) will converge
to adifferent eigenvector.

· Suppose A isHermition (A =A*). Then A is unitarily diagonalizable ...

A =V11V* where V is unitary

Suit VsXit, and Ivill=1 Xis

· then, since all the eigenvectors are t, let'skeep
all of the iterates v,(K) 1 to one another...

if V.CK) 1Y(K) Xits and k then

~(k) 1v,(k),v,(k) IV, so YCK) < GIR"/v, =sponsrs+

that is I Vi*G SWER"1 w1 v, 3

·in particular, if we maintain 1 in a triangular fashion:

~)AYr,, v,*)-(A*-,)1r).... Y40(Arr,)1 spend, It,...)



then,if (1,13(1213113K...

v(k)

so iA*)Ivi'Ve legenrector for nextlargesteigenvalue)

:
50 (k) (A*v,)1spans,...-Y

·

can prove inductively ... if vi*) -> Vi X its

then

(A*v"
sponse, ... as

-(,(v.*, 4i)
I spondv,*?... *3

- Ed,sr,v,) Vitspangr,?...(3
-

~(*)->Ve as k- o

for 11)

so Vitspon?...3 -0

if i t, -> V,if its since vs are I

· ,, ,,ie + Sisuoi +

vanishingpreciatevectorsaredominates
so?

(k)

Y+1 ·Y+1.

· leads to an algorithm:

· Simultaneous Iteration:

i. inputAGDuth Hermition, Voss quant*
of desired eigenvalues

I 2. orthogondize V"-> Q I3. iterate for K=1,2, ... until stopping

(i) W =AQ
-< increase the power

(ii) Q(*) R**) =W s triangular,orthogonalization
(iii) I,*r(A,9,()) =g*)Ag,) 5-Loptional

use Householder

then 9ik) are normalized and mutually - and

converge
to the 1 largest eigenvectors is -r(A,gx,

use Rayleigh to estimate

eigenvalues...



· simultaneous iterationis usually expressed in a different order...

orthogonalize, then raise the power (multiply by Al

I
·

Brtterafront.Hermitionstothe all backward stable I(i) Q'* R* =A* [ orthogonalize (rangela), use Householder ·

(ii) A(k
+1)
=R(x) &(*) implicitly multiply by A -

fastask!OCIe
(iii) II* =r(A,g(*) =g(k)*19) =AYS optional

cost: O(kn?)!!!

. are these the same?

· let Q,*, R,be the Q'sand R's

produced by simultaneous iteration initialized m/VI*=I.

· let Q, R'* be the Q's and R's

produced by QR iteration initialized m/VI*=I.

· let A* be the 4th
power of A

*** and A
· then: -

1

(i) R=R'* (iii) A*=Q!**Q,*
(ii) QI* =0 =0"?"...Q' (in) A*=Q,*...R,"
-

R'sand Q's i-- p(k)p(k)...R'

implicitly, QR of AF

· let's check (iii)

· A=A 10)
· Q"R" =A* I > R" =Q

*

A* ,yas
· A=B"Q" =Q"***Q" = ④* AQ" " =· O'() =A 1 i

=Q'*A'
(2)

· I=RQ' =0**"Q=(Q*Q"*) A"(Q"Q")
: =(Q" Q)*A (Q" Q) = He

· A(r =0(k)*()(k-10(k) :

so

**=(Q"Q...Q"*A (Q"Q...Q) =Q,**AQ,



·Equation (iii): A*=Q,**A Qs
where Q,*=Q"Q...Q'

provides on alternative perspective on QR iteration...

·observations:1. Q,* is unitary so

①,
*

=Q,
.: *) =Q,""AQ, Q,*Q!=A
one similarity transforms.

·: A* and A have the same eigenvalues

2. I=r(A, 9) =9!**Ass= e,(Q,
**AQ,]e,

=A

... the diagonal entries ofAs convergeto the eigenvalues

and I, d, so A,* -> I

I simultaneous iteration

of A. from
convergence of

3. 9s*. Y so Q's V so, ifA:VAV

then A*=Q,
**
A Q,* VVAVV=

So i

OKOOO!Ein 3 QR iteration is an mererevealing

iteration. Ateach stage we implicitly

SA* -, A,*-0 if its perform a unitarysimilarity transform of

A that takes A*-> *=Q'*
*****)

· Convergence follows from convergence
ofpower iteration, S.t. as k -> co, A*-> 1

if A Hermition, 14, 11(z).....and then A*-> Is and, the product of the transforms:Q,**:Q"Q...Q'*

and Q,*-> Vgeometrically (linear convergence) my constant: converges to V, Q,*s V

C =max 3(x+)/13(([1,n-13

lif use Vo Date then cer3...37(slow for similar eigenvalues...



· Combining ideas from:

(i) eigenvalue revealing iteration use to preprocess, reduce cost ofeach QR colculation

(ii) Rayleigh quotient iteration (shifting). I use toaccelerate convergence, isolate particular eigenvalues,

gives a practical (widely used) algorithm. . . then split into smaller subproblems

Isee lectures 28 and 29)

· Figenvalue Revealing Factorizations (and Iteration).

· Lef: given my At D* then Ia Schw

decomposition of A:

A =a
+a*=1 -qi))///]

where?

(i) QECY is unitary

(ii) T is upper triangular

· Facts:1. Q*=Q so Q TQ
*

=A, 7 =Q*AQ

are similaritytransforms so 1(T)=11(A)

CA and I have the same eigenvalues)

2. T
is triangular so b,(A) =1,(T) =Ts,

her the eigenvalues of A as the dissonal entres of t.) +=(***!!)
hence T is "eigenvalue revealing"

3. If A isHermition, T =QAQ*is Hermition, I T
=("I, T*= xx

all Hermition triangular matrices are diagonal T =T* requires T
=1I

So T is diagonal, T = 1 so Q=V.

· Eigenvalue revealing iteration: find Q s.t. A:QTQ* =T=Q* AQ

impossible w/ a direct method (otherwise, direct

methods for eigenvalues would exist)

· instead, attemptiteratively:A*Q***-* Q'
s.t. A* -> T

and Q,=Q"Q...**-> Q

· exactly what QR iteration does. Stable since all operations are unitary.



· Processing: beforestarting QR iteration

find a unitary similarity transform of A,

* =*A s.t. is cheaper

to workwith (want& sporse, IIT)

· usually, aim for upper Hessenberg...

· Lef: IEDY is upper Hessenberg if. =0 V is ,H1.

Cupper triangular + 1 nonzero subdiagonal)

: ...that
cance nonzer, cast I ate off-diagonal

and, if A is Hermition, I is Hermition so

is tridiagonal thus sparse

***. ***... isa simi· Can reduce from A-I ul a direct method

·,"yiiiriyyji,,tytyyty..
iterate on submatrix.

· cost! O(n3) generically, O(In3) if Hermition

· bockward stable (unitary operations / Householder)

. using cutscost of each step ofQR iteration

· if A is Hermition => Ais tridiogonal
reduces cost of each QR stepto 0(n)

so cost of QR iteration is OCA iterations. n")

lotten iterations (27 ... reduction to
upper Hessenberg more expensive than subsequent iteration!)



· Shifting: update QR stp w/ shift n't...

(i) Q
* *=A** - n* I

(ii) A* =(y(k) Q(x) +n) I

where n(k) is chosen to speed convergence

·Ex: mi =A* =r(A,9,") =1, =x,

·Method: 1. use Householder to reduce to upper Hessenberg
2.run QR iteration w/ shifts

· achieves: cubic convergence like Rayleigh quotient iteration

produces backward stable estimates

Fastas1
S. t.

F =YIF"satisfies "** =oc9m)

and
15 - x_
"All

O(Em).

· Worning:conditioning of the eigenvectors B values

of A in perturbations to A can be

very bad, especially if A is not unitarily diagonalizable!
· stability of (X,Y) depends on gap

between Is

and nextnearest eigenvalue...



Week 9 - Applications of Spectral Linear Algebra. Embedding Pata in Low-Dimensions

Tuesday - May 16th

· Logistics:
· HW 6 and Project I posted, due the 25th and 26M

· Learning Goals:
1. State on embedding/low-dimensional data representation problem

2. Relate spectral linear algebra to geomety of data
3. Perform PCAusing the SVP and explain why itworks

An Embedding Problem:

· Suppose we are given a collection of data vectors

SX, X2, ... Xm3, 5 =ejei "I
-

where his is the ith quantity measured in the th trial/subject/example.
· collect the data into a matrix X:

· Ex: collection
itinititinterneteshoixel

is detained by #scrig,b
then X., EIRBP, m vectors x

isit... classic Ex:collection of hand drown digits
pictures of faces, pictures of cats

I and dogs

(IST:m= 60x10" images of
hand-drawn digits)

· Ex: genotype data: m =1,387 individuals (from pool of 3x103 European study participants)

n =197,146 loci



Xan
<

· Each data vector XEIR" can be treated as a point
in on n-dimensional (n-D) space ..........itsint· Collection of m points form a scatter cloud

'X,

-

· Problem: n is often large, or very large
· Ex: 480p image has n =1,353,600 =0(10%) million dimensional!

genetic data using 0(103) loci

· high-D data can be difficult to workwith:

· memory intensive,desire: compressionI
·visualize, desire: reduce to 2-4 dimensions Ireduce dimension...

-

·interprets individual entries are rarely meaningful done
meaning stored in the collection of values ...

· really an issue of basis:
rarely meaningful alone
don't represent common-xix...offeatures in the data

...meaningfully.
desire: workin a meaningful coordinate system...

or patterns in data, separates distinct

I-

use a basis that captures relevant features

- examples (for classification)

· Embedding Problem: given
X =3x.,, xiz, ... x.m3, YER" find a mapping that

sends each data vector , -> Y
GIRd where dan

that preserves relevant patterns/structure in X

· aim to lose as little info about X as possible

· often seek a mapping s.t. the entries of yeIR"
f-

(directions in IRP) are intrinsically meaningful...

greentegeometry in the embedding/latentspace ->meaning in data

· Representation in a latent space:seek a mapping filR*-IR" s.t. x fly,
usually for dan. R

· then, dota Xis concentrated near a manifold

equal to the range of f R*
**

I



·WeRepetation: fly) is an offine function of y.
that is:fly) =x +By, EIR", BE/R**d

· represents date as a linear combination of a basisvectors

bes,biz.... bid where by EIR"

ba
· bosis vectors Ebijb, are "feature vectors",representsas a weighted

· combination of features, weights 34,5,
:

· therange of f is the offine subspace range (18)-
+z

possible if I concentrated near and dimensional subspace· · for fixed I, I find
y,
from is by solving the US

I

problem:
minimize: 11 by - (x,-I) ll over all yEIR*

W so, solve by projection: y=(y)
-)

range (18)

· Can find y from X, B, Y vie projection...

·how to choose (1, I)? 5a new problem...

· pose as an optimization problem:

· find a d-dimensional subspace, range (I)+ I
· il s.t. projection ontothe subspace retains mostof the innings."information"or "structure"of X.

· what we mean by "information/structure"determines bad choice of good choice of
b

the form of the problem...

·Ex: aim to maintain as much variance/spread in the data as possible
· relevant to linear classifiers B regression, normally distributed data.

·Ex: sim to maintain pairwise distances and angles between embedded

data points...



· Question: Why can we hope to find a subspace of dimension den

3.t. projection onto it retains most of structure of X?

· Johnson - Lindenstross Lemma:

Given any X, 2x3, 4, EIR" let 02921 and d =Tah(m)/927.

Then, there is a linear map M:IR"->IR* such that
-

(1 - 3) (1x, - 511 =(1M(x:-y)(12(1 +2) 11X: -51 ·,
-one Six
Yi -Y

for all 11i.) M. i
· loosely: any set of points in a high- 1 space can be linearly mapped ........

114-41
Isoy, projected) into a low- 1 space while nearly preserving low - I

the distance between points,
and the low dimension d is logarithmic in the # of points m.

. can extend to similar statementsregarding the inner-products ... nearly preserve angles.

· So, can reasonably hope to find a linear representation 3.t. projection
retains most of the structure in X...

· Principal Component Analysis (PCA):

· informally: given X, find a linear representation of X

using shift Iand features Q :39.. ... 93 s.t

1. features are independent2. projection ontoitspan (a) retains as much
variance

19:19, for its) as possible.

· Verience in data: given samples 3x,3. tIR
· Centroid:=average of samples:itis
e · Sample Vor in X =average distance to I squared (when is drawn uniformly

1

I varianceinX from XS=mt, (1x,- E1)"



· n-dimensions: given Ex,3, EIR"
·

..-
X

[

I
26

⑧

&

3

· Centroid:I=hitsso ei:average value across it row of X11) -Ex
·

· Component-Wise Variance: Vor in ith
compintllX;-kill

⑧

⑧ii.
⑧

⑧

· Vorience: sum of component-wise variances

VorIX] =m!, .(IXis-killme(X-E:ll
x =1, vc:xmut, computerergoneares =m!,IX, -I

-overage (distance from randomly sampled x, to il

· We've seen this before:

· define centered data matrix x=original y - k
~

· then:voligiveortheFrobenourtime inthe .....
ga.

Vor [x] =ts=m lXilEr -

-

good choice of

while maximizing the Frobenius norm of the projection... good choice of b

· Assume X is centered (if not, replace X with XY

· Then,

givenawasnoteasytaste,bynormalizeda 1ia.....e

· then- Inix.int-jais, a... a"Yem)-a;s=a

· so: XQ'*- solve for Y'* by projection: Y
=O'*x
x=0x =PX =x,a-
Iprojector ontorange(Q")

"Q



X,
· If y=Q'*, XQy' then the error in the representation is:

- H error, 9

⑧
E=X- 0* -d=X -

x,a
=x1a

&
....... Xia,

componentof x 1 torange(a)
"y

↳ ~88...
*

so DEIII. =G(Xs-Xa,)=m)nX-ra,l) D
⑧

&
*average distance froms ......

2

to its approximation

· PCA(formally):given XEIR*** (centered) find QE IR**d s.t.
1. independence: 9: I 9, for any its, (119,11=1 for any is

2. accuracy: set:

Y =QX,X =Y,E=x- QY

Maximize:

VorIY]given Q => maximize: 11Q"XIII

· Soln:
1. center the data I · Claim: 9:U, maximizes the variance after projection.

2. SV0: X=UEVT
Why? Prove:I I · take a greedy approach (solve for 9, then 92, ...)

3. Set 9,2,. · apply geometric interpretation of the Sup

· Original Problem: find QEIRmed, orthonormal calls, maximizing IIQXIE.

·"Greedy"Approach: solve for a first, maximize 119"x"
·9,

subtract off projection of X onto 9, ... a traInte--- I
⑧

then solve for 92 maximizing the var. remaining ...
· iterate. = X19,

· Solving for 9: given some 9, y =gX
· Xis centered so mean [y,3:9 "mean 3x3=0.

thus,
ver(i):mt," =mt, lyll=it 1194X=mt, IIxall

·

so, tomaximize varlys,

maximize
Ixtall over all lall=1



to maximize varly) maximize Ixall over all lgl=1...

-roll,goof SVO:given AGIRM*

in
itErnstthe
nsmileitthestretch

reflect

unit ball:11xIl=1

·

so. Asends -normal basis 3vi,yz...3 to orthogonal basis 36,2,Geite....min
· sends vs -> 6,4, for min(m, n)

(Ay = 64, so, the input stretched the most by A

is v, since 626 for1

· thus, given A: maximize 11AgI over all 9 sit. Iql=1
is solved by g=V,, IAv,lI=6.

-

So, ifX=USUthen XT=VLT (swap roles of V and US

2,

mail ititiL

1191i = 1

the input 2,- 6,V, maximizes IIXgll over all all

thus, 9,=2..



· What about the remaining q's?

· Induction:

· show that, if 9pUpfor KII
.

then 9,
+,

=4+1.

-mmmthi· ergue using projection. (seebelow
&otd: X

+ Remainder:E=X
a,

20: . II⑳
.

.*119,-= ---

E

8

asistent"e
S e

e

Project Xonto Q' Project X 1 to Q-
maximize variance

minimize variance

I
afterprojection:asX-Trass:vjeff(mill

...
next largestsingular value is 61

· So, by induction: PCAis solved
*

by the SVD!
corresponds to rectors 2,H, YH A

1. 9: 2, for Jt(1, d) (dronk(x))
-> is are I so 9it 9 for its

d

2.x*=6(u)=(i....paj1"..stl
=

ET
-
this is a ranked matrix.

is y'd a good rank-d approx toX?

· Question: does the greedy approach maximize var in all components?

minimize error?



· Question: does the greedy approach maximize var in all components?

minimize error?

↳
is x
=0y'd an accurate approx. to X?

· Res. In fact, it is optimal...

·roll: given X:UEU"with rank r, can write X via a sorter products

-initisare
weighted by the corresponding singular value, Gr

-

· earlier we saw. X*- (Q&*"X=PaX=Xna
(d)

· if a=(i,ye...ha] then X =P var
↳sponden,...e
-
Y

P
Ispenden,...instant- ine

I tospon I tospon

so, x
= Rienne,(m) =onv +E =(

-

truncate sum of a terms

· truncate the sum of a terms... XX=Cup"
· since 6,26226.... (d)*X accurately for large enough d.

· Thm: (Eckort - Minsky-Young) given A, man w/ SVD A=USU,and 6:46, for its

then for drank(A):
q(*=E,S(,)

is the unique minimizer of IIA-BII
fro

over all I rank-d.

·. x'* is closest approx to Xof ranked. Minimizes HIE'lI=IIX-x*le? Maximizes 1IXlI



rank(x)
· Before:the sequence Sx 3,=1 iswkoptimal

ronk 1:X=6,12,V, -best possible rank-1 approxto X

ronk 2: x=6,14, V, + GelUzVe" -best possible rank- 2 approxto X

ronk 3:X=6,(4,v,Y +6UzveY + 65/4s VsY -best possible rank- 3 approxto X

: :

ranted: x'=E,S(n, =best possible ranked approx to X.

· Questions:

1.howaccurate is X'? (what is IIEIIFro??)
see HW.

·IIEIII. =IX- xll-ns-Es=Ess"

so, relative error: IIEAiro/III*(ees?)(1-ses= (1-i)
2. When can we choose d<n?

(when X is numerically low rank... S
·when Idean set. See when is decoy quickly

· Ex: Novembre et al, "Genes Mirror Geography Within Europe,"Nature, 2008

data: milsat individuals ty but, much of genetic code likely shared by ancestra.

·

· suggests dan possible and variation in data meaningful
· seek a dim, subspace retaining/explaining as much variance as possible...

-



· Where we go
next:

· Qutions: (Evaluating PCA)

1. Related Methods: Multi-Dimensional Scaling ... What if we preserve pairwise distances? angles?
Low Rank MatrixCompletion ... What if we are missing data?

2. Why are many data matrices numerically low-rank?

Isee Townsend BUdell, Why are bigdata matrices low rank

SIAM J. MATH. DATASCIENCE, 2019)

nice application of Johnson - Lindenstrass!

3. does PCAextract interpretable features?

(see application example to game theory B strategic analysisin Poker -> yes!

see "eigenfaces"example -> no!
...

discuss limits of Frobenius norm -> Up low rankapprox

... look of realistic constraints in feature vectors, allow alternating/recursive corrections

working from overall
overage

to details -> non-negative matrix factorization (

4. What if data is not concentrated on a lowed subspace?
can we use non-linear representations?how do we study topology of data?

Idiscuss intrinsic vs. extrinsic geometry, PCAdepends on
extrinsic geometry -> diffusion maps, spectral graph embedding, topological data analysis.)



Thursday - May18th-Low RankApproximation

·Logstis.
· HW6 and Project I posted
due next Thursday and Friday

· ols:
·Eckort - Mirsky - Young

· Proof

· Generic significance for low rankapproximation
· Ex:
-

· Genes Mirror Geography

· Looking ahead... (limitations and extensions)

· Numerics and Computations going
forward

· Eckart - Mirsty - Young Thm:

· Thm: (Eckort - Minsky-Young) given A, man w/ SVD A:USU*, and 6:46, for its
then for drank(A):

q(*=E,5(y,y*)
is the unique minimizer of IIA-BII

fro
over all I rank-d.

2
· Morzone:

ItForcisein S 11A-Allao=Ees
so, relative error:

HA-A* l/Alle-Es)/e
·so, AAfordamn if G(A) decoy quickly past

some small d

desired error tolerance

· numerical rank -smallest d s.t. IIA- Allero/IAllro*=(0,13



·Fect: many large matrices are numerically low rank... why?In(many largematrices are ill-conditioned)

Isee Townsend BUdell, Why are bigdata matrices low rank

SIAM J. MATH. DATASCIENCE, 2019)

nice application of Johnson - Lindenstrass!

· so common often assumed wontqualification
"right"
↓

Aenterelyusefs,

itis
the

R II

for remin(mn).Allows:

· Compression:Store w/ (m+4)d entries

instead of me

· Application: multiplyingcost O((m+n)d) instead of 0(mn)

· Model reduction B low-dimensional embedding

· Let'sprove Eckert - Mirsky - Young...

·

given Ae Dman
I

wont BeD** of rank drank(A)

so write:

Die.
want BA so him to minimize:

11A-BIII.=Eila-la-las-final
34,M =Mij.Mij

· two approaches: -

1. Ilille is unitarily invariantsince II MIIF =trace (MM*)=ecns
then IIM*lE* =trace (M*QM*) =trace (MM*)=HMIIE

so, given
A=USV

117-811F=I1 U*CA-8) VIIE-118-(*) (VRs*I1E= 112- E*E.
where I =U*LE) L =UI, R= V*RE) R =VE

· WLOG can assume AEIRth* and diagonal...



· if A is real and diagonal, men or nonnegative entries

we

af) oros

in either cose, only need to recover the nonzero block

Crank(A) xrank (A)) since any rows =0 can be recovered

by setting lip 0 vi sit. row ito

and any cols=0... (p =0 Y;st. col. 20

· WLOG assume A is square B full rank it thus, square, Hermition, positive definite
real, nonnegative B diagonal

(the restis ablocks and unitary transformations

by U and V)

· if A is symmetric then I best approximates A

50best approximales A

but AT = A

so & =I (if unique)

lookfor symmetric, real solns:

L =R,A =B =RR*
Ireal since A real

so, WLOG solve for REIR** minimizing: 11A-RRYI== XA-RRY A-RRY =(9-Egn=f(R)
-

f(R)

·reduced toa real, square, symmetric, podo problem...

· symmetrizing solves I problems...

(a) scaling: let Ibe a diagonal dard, invertible matrix...

if B =LRP

then 8 =L100"R"so (LP) and COR

are also soln's P

Iscale columns lpby dek and inby "der)
· usually solve by either fixing Illl=1, Irll=1
or (symmetrized) 11(1):111).



(b) orthogonality: ifI=LR*

can orthogonalize a QR decomp

1 =1+bosis forLJ)*/=Q. Tc

or R =Q Ti
then!

r =a, (TT]an*-() lirs)!s
--

or
methenei

E Is

WLOG could require I callsin 2 or R ... which to enforce?

Conce symmetrized we'll have both sides I...)

2. solve directly bycomputing XRf(R) and setting Yf(R) =0.

f(R) =11A-RR'll. -C.-(RRY,)=A-RR?A-RRYY1 matixCelement-wise)inner product

Grenf() =GrexA-RRY, A-RRY =X-GrenRRY, A-RRY + XA-RRY-GreaRR"Y
=-2 <A-RRY, GreaRRY

=-20 - [RRY.) (treatRRY;

then:(RRY, = E, in is so VrenRRY, Great in in Grenin init
↑ Irenifitise

=0unlessin=e]e

so CreGRRY = jT..winie.........be-↓ [eth indicator
.=s

Urenf(R) =-z , (A-RRY, (wee"+e); (e. Find
for X,f(R) =0 need Greyf(R) =0 Fe,k



· So, to simplify, take greedy approach, solve one column of R of a time...

Crenf(R) = -2, (H - BR), (ree-eir-- (A-RRY,(mee), (A-RRY,(eem")i
=o
unless
j =l

=unless

·--ARYinn+ (A-RRY in)
=(A-RRYe,by symmetry

=-4 (A-RRI = - 4A- RR.* rabe

so: Xrf(R) =-4 (A- RRT) r => Tmf(R) =0 requiresRIfor all a

i
"generalized eigennector problem"

· if choose R wrtcolumns then! R"Ux -; e
So, solving for R w/I col's

soRRY:R(l1rxlex) =Irllrx... thatminimize IA-RRME vie

↓
gradient descent produces power

stoge

so, using Icols:Vrf(R)=-Y(Arr-11klr)=- 4(A-11)I) rk
iteration w/ shifts like...

power iteration: grod. descent on

low rankapprox

then: Tref(R) =8requires Arx=Irell"... eigenweder problem!
error!

· Conclusion:if A is real, symmetric and REIR*** or Icalls

minimizes f(R) = 1 11A-RRII
then each column inmust be an eigenvector of A

where Arx=Ynk, and or magnitude Irll= 1x

So, if (V,, by) are the eigenpairs of A (normalized)

then, for all K, 7, s.t.

r =YT Y,j

· reduces the problem to
assigning an eigenvectorto each col ofR...

· apparent that the best assignment is in:VIx Y where IX, 1? (zl?...

·if A =VAV=VAV=sum"
then, ossigning r=in gives RR= (55aVe)(25) =x(vnvn
so A-RRT = gCr) and IA-RETHE.gal



·to
go

back to generic
A... rank (A)=r

FITY
solve for R from the

upper new block of

fig,si=l"......gener
· the, append zeros: Fx=vixenytm =r
then: TT is the best rank & approximation to f

. and multiply by unitary transforms (change basisfor row

and column space)

erwin-Inn...infront-wan I
1=dieg (6.. ... sal")i...ja)
R =ding 10.....sal"(; ... ]

m=vi=inre.Trait =vo vn

.b=B=/rinjall......I
-, (UV) =A.

· Therefore, the best ranked approximation toA =A*=E,Gxunvnt
and is unique if 6,3623...

· Consequence:given AGDM, Meaded invertible then the low rankdecomp

problem: find L,R given a normalization and Iconstraint on one of the

factors, Le Drd, RED**minimizing 11A-LMR*IE

can always be solved by truncatingthe VP ofA andis

unique if 6, are distinct. Allow accurate approxfor dLm,n if A is numerically low rank.



· Where we go
next:

· Qutions: (Evaluating PCA)

8. Why are many data matrices numerically low-rank?

↑ Isee Townsend BUdell, Why are bigdata matrices low rank

or, when... SIAM J. MATH. DATASCIENCE, 2019)

nice application of Johnson - Lindenstrass!

1. Related Methods: Multi-Dimensional Scaling ... What if we preserve pairwise distances? angles?
Low Rank MatrixCompletion ... What if we are missing data?

2. does PCAextract interpretable features?

(see application example to game theory B strategic analysisin Poker -> yes!

see "eigenfaces"example -> no!
...

discuss limits of Frobenius norm -> Up low rankapprox

... look of realistic constraints in feature vectors, allow alternating/recursive corrections

working from overall
overage

to details -> non-negative matrix factorization (

3. What if data is not concentrated on a lowed subspace?
can we use non-linear representations?how do we study topology of data?

Idiscuss intrinsic vs. extrinsic geometry, PCAdepends on
extrinsic geometry -> diffusion maps, spectral graph embedding, topological data analysis.)
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