24310 -Numerical Linear Algebra - Week 1
Tuesday - 03/21/23

- Course Info:
- Instructor: Alex Strong, alexstrang e uchicago.edu
- Office: Jones 309
-TA: Hwarwoo (Josh) Kim, hakim O uchicago.edu
- Office Hours: Wednesdays, 9:00-10:30 am, Jones 304
- Lab Sessions: Fridays, 3:00-5:00 pm, Jones 226
- Materials: Numerical Linear Algebra by Trefethen and Bon
- Assignments and projects in Jupyter note book (install anaconda locally)
- All info, announcements, calendar, etc on canvas
- Logistics:
- Read part I and lectwes 12-15 of part III
- Complete course poll
- Install anaconda and make sure you con launch Jupiter notebook
- Goals:
- Intro to numerical analysis/scientific computing
- Problem type, accuracy/stability, costleffriency
$\left.\begin{array}{l}\text { - floating point orithectic } \\ \text { - Stability } \\ \text { - Conditioning } \\ \text { - Big } O_{\text {notation }}\end{array}\right\}$ accuracy $\$$ stability
- What is numerical analysis?
 focus on scientife problems, stadisticol/doto science problems - Computation: is discrete and finite that involve continuous writhes
- the tension between continuous problems $\$$ discrete methods will raise the Key issues of the feild
- accuracy
- scope of what can be approximation
- costrefficiany
- convergence
- discretization
- rounding
- error propagation
- stability B robustness
- Key moral:
- There are often many mathematically equivalent ways to solve a problem, that are numerically completely different.
- How? how you solve a problem matters.
- Design Principles for Numerical Analysis: "axes of analysis"

1. What are you solving?
a. What is the general problem class?
b. are there specific features of the problem I con exploit?
(i) symmetry
(iii) sparsity
(ii) convexity
(iv) prior Knowledge or constraints on your solo's
2. How accurately? real problems have errors:
(i) errors in model, problem
(iii) approximation errors from choice of method (errors from discretization)
(ii) error in inputs that specify a problem instance $\}$ not redly anmeical
(iv) computational/ronading errors $\}$ numerical analysis

- Achieve a desired accuracy. (depends on controlling all 4 sowices)
- Numerically, aim for stability \Rightarrow small relative errors in output, given small errors in input

3. How quickly? what is your computational budget?
(i) memory/storage (ii) \# of operations needed (ii) clock time/wall time
(iv) \# of computational nodes, cost of the cluster, GPU, externalities

- Ex: given $A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{n}$ find $x \in \mathbb{C}^{m}$ si. $A x=b$.
then you'd call $x=A \backslash b$.

Q: what does $A \backslash b$ actually do in a real comp lang.

- does it calculate $A^{-1} \Rightarrow A^{-1} b=x$? ** basically never
- approx A^{-1} and do the some thing?
- reduce A or factor it, then solve via the factors?? direct methods
- $L U \Leftrightarrow$ Ganssion alienation
- $Q R \Leftrightarrow$ Gram- Schmidt
- iterative methods based on optimization
-Why linear algebra?
a. Most problems are multivariate
b. most multivariok problems are had
C. * unless they are linear (\sim linear)
(blk linearity allows decomposition into parts sequential reduction process, convert on n-D problem into a sequence of $n, 1-0$ problems)
d. and they are weful for approximation, appear as intermediate computational steps of other algorithms, and are themselves ubiguituous

Consequence:
if the basic operations done in a comp. system are $t,-, x_{1} \div$ then the basic computation steps used in algorithms are linear algebraic.

The Basics:

- Number System \Rightarrow Floating Point \#'s.
- problem: computers cant represent $\infty \cdot 1$ m many $\$ 5$ so they are restricted to a finite subset
- subset we use are the floating point \#'s
- Floating. \#'s are the comp. analog to scientific notation
- Def: a set of floating point \#'s F is defined by:

1. a base, β, integer valued, >1 (in practice $\beta=2$)
2. a precision, t, integer valued, >1 (in practice $t=24$, or $t=53$)
(3. a scale, E, integer valued, $>1 \leftarrow$ fix the smallest 3 largest \#'s in F, in practice the smallest \& largest \#'s in F are $10^{-308}, 10^{308}$)
then F is all \#'s x sit.

$$
x= \pm\left(\frac{m}{\beta^{+}}\right) \beta^{C} \text { for } m \in\left[\beta^{+-1}, \beta^{\dagger}-1\right], c \in[-E, E]
$$

(idea: is to break the real line into powers of β, then separate those intervals evenly using segments spaced according to the precision. do this between two values controlled by $-E, E$.)

$$
\text { - Ex: } \beta=2, \quad t=3, \quad E=2
$$

Thursday - $\underline{03 / 23-C \text { Computational Basics }}$

- Logistics:
- Course intro poll
- Read Part I (Lin. Alg. review) \& lectures 12-15
- Install anaconda \$ open Jrepter notebook

Goals:

- Measuring Computational Cost "big σ "notation
- Accuracy, Stability \& Conditioning
- Floating Point \#'s and machine E
- Stability
- Conditioning
- Norms
- Vector norms
- Matrix norms

Measuring Computational Cost

- nnmerics: \# of flops - floating point operations $(t,-, x, \div)$ required by an algorithm
memory usage or storage, $\#$ of floating point values stored
- often sind the \# of flops required in an asymptotic sense - how does the \# of operations required scale w/ problem size?
- "big σ " notation...
- Ea: solve $A x=b$ for $A \in \mathbb{C}^{n \times n}$, use a direct method, $\sigma\left(n^{3}\right)$ means: \# operations required (n) bounded from above by $\mathrm{Cn}^{3}, \mathrm{C}>0$ for sufficiently large n
- Def: a function $f(t), t \in \mathbb{R}$ is $\theta(g(t))$ if $\} c>0, c \in \mathbb{R}$ s.t.

$$
|f(t)| \leq C g(t), \quad g(t)>0, g(t) \in \mathbb{R}
$$

(more generally, often meant in a limiting sense, either $\forall t \geq T$, or $\forall t \leq T$)

- this notion, measure cost of an algorithen via a bound on its scaling in problem size \Rightarrow complexity
- problems arising from lin. alg. (those that admit direct methods) run in "polynomial time"
- P is the class of polynomial time problems if all problems in P admit an algorithm that produces son's using $\theta(p(n))$ steps where $p(n)$ is a polynomial of finite degree, $n=$ problem size
- iterative methods are often derived from optimization usually thinking in terms of convergence analysis fix accuracy \rightarrow complexity
- NP is the class of nondeterministic polynomial time problems - there is no known polynomial time method for producing son's
- but any sols can be verified in polynomial time

Ex: Combinatorial optimization problems whose state space grows exponentially in problan size
-usually think $P=$ tractable at large scale (may be expensive)
$N P=$ intractable at large scale
slop $=3$, "cubic" slope $=2$, "quadratic time"

Accuracy, Stability \& Conditioning

- Floating - \#'s. the comp. analog to sciatific notation
- problem: Computers cant represent 0011 many \#'s
so they are restricted to a finite subset
- subset we use are the floating point \#'s
- Def: a set of floating point \#'s F is defined b_{y} :

1. a base, β, integer valued, >1 (in practice $\beta=2$)
2. a precision, t, integer valued, >1 (in practice $t=24$, or $t=53$)
(3. a sale, E, inter valued, $>1 \leftarrow$ fix the smallest 3 largest \#'s in F, in practice the smallest B largest I's in F
are $10^{-308}, 10^{308}$)
then F is all \#'s x sit.

$$
x= \pm\left(\frac{m}{\beta^{+}}\right) \beta^{e} \text { for } m \in\left[\beta^{+-1}, \beta^{+}-1\right], c \in[-E, E]
$$

lidea: is to break the real line into powers of β, then separak those intervals coaly using segments spored according to the precision. do this between two values controlled by $-E, E$.)

- Ex: $\beta=2, \quad t=3, E=2$

-check: if $m=\beta^{t-1}$ then $\frac{m}{\beta^{t}}=\beta^{-1}$ so $\left(\frac{m}{\beta^{t}}\right) \beta^{c}=\beta^{c-1} \leftarrow$ lower endpoint of the e interval

$$
\text { if } m=\beta^{t}-1 \text { then } \frac{m}{\beta^{+}}=1-1 / \beta^{+} \text {so }\left(\frac{m}{\beta^{+}}\right) \beta^{c}=\beta^{c}-\left(\frac{1}{\beta^{+}}\right) \beta^{c} \leftarrow \text { lost } \# \text { be fore } \beta^{c}
$$

spacing in $e^{\text {the }}$ interval: $\left(\frac{\mu+1}{\beta^{+}}\right) \beta^{c}-\left(\frac{\mu}{\beta^{+}}\right) \beta^{c}=\left(\frac{1}{\beta^{+}}\right) \beta^{c}$
so, in e^{α} interval, divide into orally spored segments of size $\left(\frac{1}{\beta^{\prime}}\right) \beta^{c}$

- What is the precision of calculations using F ?
- Def: machine epsilon, $\varepsilon_{m}=\frac{1}{2} \beta^{t-1}$. (1\% the gar between 1, and the next longest

4 in F)

- set a lover limit on tolerance of any calculation (in a relative suse)
- IEEE double precision then $\varepsilon_{m}=z^{-53} \approx 1.1 \times 10^{-16}$
- Lemma: if $|x| \in[\min (F), \max (F)]$ then $\} x^{\prime} \in F$ st.

$$
\frac{\left|x-x^{\prime}\right|}{|x|} \leq \varepsilon_{m} \Leftrightarrow\left|x-x^{\prime}\right| \leq \varepsilon_{m}|x|
$$

and, if $f: \mathbb{R} \rightarrow F$ rounding to the nearest $\#$ in F, then $f \varepsilon>0$ sit. $|\varepsilon| \leqslant \varepsilon_{m}$ and $f(x)=x(1+\varepsilon)$

- Axiom of floating- arithectic: assume that our computers implement a base set of operations $(t,-, x, \div)$ through floating point equivalents (Θ, Θ, \ldots) $\{* \overrightarrow{\mathrm{fl}} \oplus\}$ such that $\exists \varepsilon>0 \mathrm{n}| | \varepsilon \mid \leq \varepsilon_{m}$ and

$$
x \circledast y=(x * y)(1+\varepsilon)
$$

- con guarantee accuracy of the basic operations up to E_{m}
- Acceway \$ Stability of problems: problem instance, inputs x, a mopping, function f which returns desired outputs, ie. Soon's
- let \tilde{f} denote the approximate son's produced by a computational routine
space of inputs
- given $f: X \rightarrow Y,(X, Y$ are vector spars) then:
outer's
- Def: the relative accuracy of \tilde{f} at $x: \frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}$
- from the numerical perspective, we design \tilde{f}, but don't hove control over errors in the inputs \rightarrow instead design for stability ie. relatively small errors in the output provided small errors in the input
- Stability: given f, \tilde{f} is stable if $\forall x \in X$, \tilde{x} s.t. $\|\tilde{x}-x\| \|_{\|x\|}=\theta\left(\varepsilon_{m}\right)$
then:

$$
\|\tilde{f}(x)-f(\tilde{x})\| /\|f(\tilde{x})\|=\sigma\left(\varepsilon_{m}\right)
$$

"nearly the night ansures to nearly the eight problem"

- Back wad Stability: given f, \tilde{f} is backward stable, if $\forall x \in X, \exists \tilde{x}$ s.l.

$$
\tilde{f}(x)=f(\tilde{x}) \text { where }\|\tilde{x}-x\| /\|x\|=\sigma\left(\varepsilon_{m}\right)
$$

"exactly the night onswer to nearly the right problem".

- Conditioning: whether / the degree to which stability is acherobole depends
on the problem we are tying to solve... seessitivy of outputs $f(x)$
to inputs x
- the scaling factor "hidden" in big $\sigma(\varepsilon)$ statements
- the \# digits of occervey lost by applying f_{1} (given

$$
\varepsilon_{m} \approx 10^{-16} \text {, only here } 16 \text { dots } 1 \text { l lose) }
$$

- If $f:$ inputs \rightarrow outputs (instance \rightarrow soin), sensitivity of $f(x)$ to perturbations in x will bound the stability of best possible \tilde{f}

- Bound the sensitivity of f from above wd regularity or smoothness conditions on f :
- Ex: f is Lipschitz contnows X w/ constant K.
then $\forall x, y \in X$

$$
\|f(x)-f(y)\| \leq K\|x-y\| \Rightarrow \frac{\|f(x)-f(\tilde{x})\|}{\|x-\tilde{x}\|} \leq K
$$

so, if $\|x-\tilde{x}\|=\sigma\left(\varepsilon_{m}\right) \Rightarrow\|f(x)-f(\tilde{x})\|=\theta\left(K \varepsilon_{m}\right)$

- Bounds on sensitivity of f. from below, condition \#, k
- well-cond. problems have K small
- ill-cond. problems have B large
- Def: given a problem instance (f, x) an absolute condition
\#, $\hat{K}(f, x)$ and a relative condition number $K(f, x)$

$$
\begin{aligned}
& \hat{K}(f, x)=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\| \leq \delta} \frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|}=\limsup _{\substack{\delta \rightarrow 0 \\
\|\delta x\| \leq \delta}} \frac{\|\delta f\|}{\|\delta x\|} \\
& K(f, x)=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\|<\delta}\left(\frac{\|\delta f\|}{\|f\|} / \frac{\|\delta x\|}{\|x\|}\right)
\end{aligned}
$$

- $K(f, x)$ worst case loss in relative accavay at (f, x)
- Ex: let $f(x)=x_{1}-x_{2} \quad$ (problem: compute the difference in 2 inputs)
then (see Trefethen), $K(f, x)=2 \frac{\operatorname{mox}\left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}}{\left|x_{1}-x_{2}\right|}$
\therefore subtraction of two large, similar 4's is unstable require high relative precision in input to retain precision in output important since rounding errors in fl . . arithmetic are relative subtraction is unstable when 2 \#'s nearly cancel)
- An example of different mathematically equivalent statements that are numerically distinct.

$$
3-2=1, \quad 5-4=1, \quad 11-10=1 \quad \rightarrow \quad(3+x)-(2+x)=1
$$

but $K(f, x)=2 \cdot(3+x)=\sigma(x) . \quad(3+x)-(2+x)=1 \quad \forall x$
but get's less stable as x grows.

Week 2 - Linear Transformations
Tuesday - 03/28123

- Logistics:
- HI 1 posted, due next Tuesday (by midnight, on canvas)
- lab sessions and office hours start this week
- Read Part I, start Part II (lectures 6-8)
-Goals:
- Norms
- Vector norms
- Operator na rms
- Conditioning revisited
- Linear Transformations
- Vector spaces and linear operations
- Finite Dimensional Linear Transformations
- Spectral radius $\$$ condition \#'s
- Review: Conditioning
- a problem is really a mapping f from inputs $x \rightarrow$ outputs $f(x)$ computationally approximate $f(x)$ w/ $\tilde{f}(x)$
- Def: given a problem instance (f, x) and a norm, $\|\cdot\|$ where $f: X \rightarrow Y, X, Y$ are vector spaces an absolute condition number $\hat{K}(f, x)$ and relative condition $\# K(f, x)$

- Ex: Let $f(x)=x_{1}-x_{2}$ for $x \in \mathbb{R}^{2},\|x\|=\max _{,}\left\{\left|x_{1}\right|\right\}$
what is $\hat{K}(f, x), K(f, x)$?

$$
\begin{aligned}
& \hat{K}(f, x)=\lim _{\delta>0} \sup _{\|\delta x\|!\delta} \frac{\left\|f\left(x+\delta_{1}\right)-f(x)\right\|}{\|\delta x\|}=\|J(x)\| \text { : } \\
& \text { where } J(x)=\left[\begin{array}{cc}
\partial_{x} f(x) & \\
\vdots & \partial_{x_{n}} f(x) \\
\vdots & \\
\partial_{1} f_{m}(x) & \partial_{f_{n}} f_{n}(x)
\end{array}\right], \quad f(x)=\left[\begin{array}{l}
f(x) \\
f_{2}(x) \\
\vdots(x)
\end{array}\right] \\
& f(x): \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x)=x_{1}-R_{2}, \quad J(x)=[1,-1]
\end{aligned}
$$

then using $\|x\|=\max _{1}\{|x|$,$\} , then \|[1,-1]\|$? $=111+1-1 \|$

$$
=1+1=2
$$

$$
\begin{aligned}
R(f, x) & =\lim _{\delta \rightarrow 0} \sup _{\|\delta x\|<\delta}\left\{\frac{\|f(x+\delta x)-f(x)\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right\}=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\|<\delta}\left\{\frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|}\right\} \frac{\|x\|}{\|f(x)\|} \\
& =\hat{K}(f, x) \frac{\|x\|}{\|f(x)\|}=2 \frac{\max \left\{\left|x_{1},\left|x_{2}\right|\right\}\right.}{\| x_{1}-x_{2} \mid}
\end{aligned}
$$

- computing a difference is ill-conditioned if $\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\} \geqslant\left|x_{1}-x_{2}\right|$
- Ex: compute $(x+1)-x=1 \Rightarrow 1-0=1$
$2-1=1$
mathematically equivalent
$11-10=1$
\vdots but numerically distinct

$$
K(f, x)=2 \max \{|x|, 1\}=\sigma(|x|)
$$

- Norms: measuring size, how big is $x \in X$?
- Def: given a vector space X, a norm $\|\cdot\|: X \rightarrow \mathbb{R},\|x\|$ assigns a real $\#$ to any $x \in X$ such that

1. $\|x\| \geq 0$ and $\|x\|=0$ iff $x=0$
2. $\|\alpha x\|=|\alpha|\|x\|$
3. triangle inequality $\|x+y\| \leq\|x\|+\|y\| \quad \forall x, y \in X$

- Ex: given $X=\mathbb{C}^{m}$ then the l_{p} norms are defined:

$$
\|x\|_{p}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{1 / p} \leftarrow " p-n o r m ", p \geq 0
$$

(i) if $p=0,\|x\|_{0}=\#$ of entries of $x \neq 0=$ cardinality of the support of x
(ii) $p=1,\|x\|_{1}=\sum_{i=1}\left|x_{i}\right| \leftarrow$ "taxicab, manhattan distance"
(iii) $p=2,\|\times\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2} \leftarrow$ Euclidean distance
(iv) $\lim p \rightarrow \infty,\|x\|_{\infty}=\max \left\{\left|x_{i}\right|\right\}$

- Io visualize the norms, often use the "unit ball" associated w/ those norms
- Def: the unit ball is $\{x$ s. $1 \quad\|\times\|=1\}$

$p=1$

pl

$p=2$

$p>2$

$p \rightarrow \infty$
- Norm Equivalency /Consistency: two norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent if

$$
\begin{aligned}
& \text { Jc,C} \subset \in \mathbb{R}^{+}, c \leq C \text { st. } \\
& c\|\times\|_{a} \leq\|\times\|_{b} \leq C\|\times\|_{a} \quad \forall x .
\end{aligned}
$$

- Ex: all p-norms $w / p \geq 1$ are equivalent... let's consider $\|x\|_{1},\|x\|_{2},\|x\|_{\infty}$

generically: if $x \in \mathbb{C}^{m}$, then $l_{p} \leqslant l_{q}$ w/ $1 \leq p \leq q$

$$
\left.\begin{array}{rl}
& \|x\|_{q} \leq\|\times\|_{p} \leq m(1 / p-1 / q) \\
\|x\|_{q} \\
\text { so }: & \|\times\|_{2} \leq\|\times\|_{1} \leq \sqrt{m}\|x\|_{2} \\
& \|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{m}\|x\|_{\infty} \\
\|x\|_{\infty} \leq\|x\|_{1} \leq m\|x\|_{\infty}
\end{array}\right\}\|x\|_{\infty} \leq\|\times\|_{2} \leq\|x\|_{1} \leq \sqrt{m}\|\times\|_{2} \leq m\|\times\|_{\infty}
$$

- further norm inequalities... follow from Holder's inequality \Rightarrow Conchy-Schwarte

Jensen's inequality when convex

- Matrix $/ O_{\text {perator Norms: two perspectives }}$

1. "Entrywise": treats $A \in \mathbb{C}^{\text {men }}$ as a list of mn 4's... views A as some object

- Ex: Frobenius norm $\|A\|_{F}=\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}$

2. "Indeed norms": view $A \in \mathbb{C}^{-\mu n}$ as parametizing o transform $T(x): C^{n} \rightarrow C^{\prime \prime}, T(x)=A x$ (Operator norm)

- Def: given $\mathbb{C}^{n}, \mathbb{C}^{m}$ vector spores w/ norms $\|\cdot\|_{a},\|\cdot\|_{b}$ the induced operator norm of $A \in \mathbb{C}^{m \times n}$ is

$$
\sup _{\substack{x \neq 0 \\ x \in C^{n}}}\left\{\frac{\|A \times\|_{b}}{\|\times\|_{a}}\right\}=\sup _{\substack{\| \|_{a}=1 \\ x \in C^{n}}}\left\{\|A \times\|_{b}\right\}
$$

- size of maximum es output (messed $w /\|\cdot\|_{b}$) given input x st. $\|x\|_{q}=1$
- then: $\|A \times\|_{b} \leq\|A\|_{(0,6)}\|\times\|_{\text {}}$
nontrivial to compute in most cases
- Def: induced p-norm of A is $\sup _{x \in \mathbb{C}^{*}}\left\{\left\|A_{x}\right\|_{p}\right\}$
$\|x\|_{p}=1 \quad\left[l_{p}\right.$ norm.
-moximan "amplification" under multiplication by A...

- operator norms inherit the norm equivalency of the vector nome that induce them
- allows comparisonlinequalities relating operator norms
-useful since some induced p-norms can be computed entrywise...
$5^{\text {th }}$ column of A
- Ex: $\|A\|_{1}=\max _{1 \leq j \leq 1}\left\{\sum_{i=1}^{m}\left|a_{i j}\right|\right\}=\max _{1 \leq j \leq 4}\left\{\left\|a_{j}\right\|_{1}\right\}=" \max$ col. sum"

$$
\|A\|_{\infty}=\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}=\max _{1 \leq i \leq m}\left\{\left\|-a_{i}-\right\|_{1}\right\}=\text { "max row sum" }
$$

-Why?

- Proof: $\|A\|_{1}=\sup _{\|x\|_{1}=1}\{\|A \times\|,\}_{1} \quad$ triangle $]\|x\|=\sum_{j=1}|x|=1$

$$
\|A \times\|_{1}=\left\|\sum_{j=1}^{n} x_{j} a_{j}^{\prime}\right\|_{1} \leq \sum_{j=1}^{b}\left|x_{j}\right|\left\|a_{j}\right\|_{1} \quad \therefore\|A \times\|_{1} \text { is a weighted average }
$$

of the 1 -norm of the col's of A...
for M maximizing $\left\|a_{j}\right\|_{1}$ over all \lrcorner
(x is indicator vector for col of maximal Sum)

- $\|A\|_{\infty}=\sup _{\|\times\|_{\infty}=1}\left\{\|A \times\|_{\infty}\right\}=\ldots$ try and prove this yowself.
- Equivaknay: given $A \in \mathbb{C}^{m \times n}, \frac{1}{\sqrt{n}}\|A\|_{\infty} \leq\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty}, \frac{1}{\sqrt{m}}\|A\|_{1} \leq\|A\|_{2} \leq \sqrt{n}\left\|A_{1}\right\|$ and, by Holder:

$$
\|A\|_{2} \leq \sqrt{\|A\|_{1}\|A\|_{\infty}}
$$

- useful since $\|A\|_{z}$ is hard to compute, but the most natural while $\|A\|, \$\|A\|_{\infty}$ are easy to compute.
- Ex. recall $f(x)=x_{1}-x_{2}, \hat{k}(f, x)=\lim _{\delta \rightarrow 0} \sup _{\left\|S_{x}\right\| \leq \delta}\left\{\frac{\|f(x+\delta x)-f(x)\|_{b}}{\left\|\delta_{x}\right\|_{0}}\right\}$
if f is continuously differentiable, $f(x+\delta x)=f(x)+J(x) \delta x+\theta\left(\delta x^{2}\right) \quad$ (local Taylor series) for smooth enough norms

$$
\text { so } \lim _{\substack{\delta \rightarrow 0 \\\|S x\| \leq S}}\left\{\frac{\|f(x+\delta x)-f(x)\|_{b}}{\left\|\delta_{x}\right\|_{0}}\right\}=\lim _{\substack{\delta \rightarrow 0 \\\left\|S_{x x}\right\|_{s}}}\left\{\frac{\left\|J(x) \delta x+\sigma\left(\delta x^{*}\right)\right\|_{b}}{\|\delta x\|_{0}}\right\} \leq \sup _{\delta x \neq 0}\left\{\frac{\left\|J(x) \delta \delta_{x}\right\|_{b}}{\left\|\delta_{x}\right\|_{a}}\right\}=\|J(x)\|_{(a, b)}
$$

wed used $\|\cdot\|_{0=b=\infty}$ so wanted $\|J(x)\|_{\infty}=\|[1,-1]\|_{\infty}=1+1=2$
if $\|\cdot\|_{a-b=1} \cdots \quad\|J(x)\|_{1}=\max \{1, \eta=1$.

- Ex: Conditioning of division: $f(x)=\frac{x_{1}}{x_{2}}$, then $J(x)=\left[1 / x_{2},-x_{1} / x_{2}^{2}\right]$

$$
\text { so } \hat{K}_{\infty}(x)=\|J(x)\|_{\infty}=\frac{1}{\left|x_{2}\right|^{2}}\left(\left|x_{1}\right|+\left|x_{2}\right|\right) \quad\left\{\begin{aligned}
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\},\|f(x)\|_{\infty}=\frac{\left|x_{1}\right|}{\left|x_{e}\right|}
\end{aligned}\right\} \begin{aligned}
K_{\infty}(x) & =\hat{K}_{\infty}(x) \frac{\|x\|_{\infty}}{\|f(x)\|_{\infty}}=\frac{\left|x_{1}\right|+\left|x_{2}\right|}{\left|x_{2}\right|^{2}} \frac{\left|x_{2}\right|}{\left|x_{1}\right|}\|x\|_{\infty} \\
& =\frac{\left|x_{1}\right|+\left|x_{\infty}\right|}{\left|x_{1}\right| x_{2} \mid} \max \left\{\left|x_{1} 1,\left|x_{2}\right|\right\}\right. \\
& =1+\operatorname{mox}\left\{\frac{\left|x_{1}\right|}{\left|x_{2}\right|}, \frac{\left|x_{2}\right|}{\left.\frac{1 x_{1} \mid}{}\right\}}\right.
\end{aligned}
$$

so $K_{\infty}(x)=1+\max \left\{\frac{\left|x_{1}\right|}{\mid x_{2} 1}, \frac{\left|x_{2}\right|}{\left|x_{1}\right|}\right\}$... division is ill-conditioned if $\left|x_{1}\right| \gg\left|x_{2}\right|$ or $\left|x_{2}\right| \gg\left|x_{1}\right|$
(inputs of different scales)

- numerical moral: only trust division of \#'s whose relative oates of magnitude are not overly different...
expect to lose as many digits of accuracy as the relative
orders of magnitudes of the inputs
ie. avoid dividing very large \#'s by very small \#'s.

Thucsday-03/30/2023

- Logistics:
- HW I posted, due next Tuesday
- First lab session on Friday, 3:00-5:00 pm, Jones 226
- Resonices. reading on discretizotion $\$$ differencing posted
- Goals:
- Linear Transformations:
- Vector Spaces \$ Transforms
- Discretization example: differencing $\$$ convolution
- Matrix Products (performing linear transforms):
- Cost/Complexily
- Spectral Perspective
- Conditioning
- Linear Transformations:
- Def: a vector space V is a set of objects $v \in V$ called vectors equipped w/ vector addition, $v+w \$$ scalar multiplication, αv (over a field) that is closed under linear combination:
given $v, w \in V$, scalars $\alpha, \beta: \underbrace{\alpha v+\beta w \in V}_{\text {linear combination }}$
- Def: an operation/transform $T: V \rightarrow W$ (that mops between vector spaces $V \$ W)$ is linear if $\forall u, v \in V, \alpha, \beta$:

$$
T(\alpha u+\beta v)=\alpha T(u)+\beta T(v)
$$

- Ex. I. $X=\mathbb{C}^{n}=$ all lists of n complex $H^{\prime} s, A \in \mathbb{C}^{m \times n}$ then let $T(x)=A x$ for $x \in \mathbb{C}^{n}$

$$
\begin{aligned}
& T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m} \\
& \begin{array}{ll}
\hat{x} & \hat{y} \\
X
\end{array}
\end{aligned}
$$

and: $T(\alpha u+\beta v)=A(\alpha u+\beta v)=\alpha A u+\beta A v=\alpha T(u)+\beta T(v)$

- Foct: All limear tronsforms $T: X \rightarrow Y$ between finite dimensionol vector spoces con be expressed $T(x)=A x$ for some matrix $A \in \mathbb{C}^{\text {men }}$
- Consequence: approximate linear tronsformations numecically vio mullipliation
w/ a matrix A.
- view matrices/matix prodacts as discretized transforms
- Let's look at some other importantlinteresting vector spoces \$ associaked transforms...
-Ex: He set of all man matices, $C^{\text {con }}$ is . netor spoce
gion $A \in C^{\text {ºxe }}$ all thesherms $T(A)=B A C$ for $B \in C^{\prime \prime \prime}, C \in C^{\cdots}$
- - lieer tonsbrentiono...

Chack:

$$
\begin{aligned}
& B(\alpha A+\beta M) C=\alpha B A C+\beta B M C \\
& T(\mu A+\beta M)=\alpha T(A)+\beta T(H) .
\end{aligned}
$$

- Ex. given $\Omega=\mathbb{C}, P^{(n)}=\{$ all palynomials of a single variable of degree $\leq m\}$ then $p \in P^{(m)}$ if $]$ coefficients $\alpha(p)$ s.t $p(x)=\sum_{j=0} \alpha_{j} x^{J}$
- is this a vector space $\forall m$? $\alpha p(x)+\beta q(x)=$ polpeomal of $+g$. $a l$
- whot is it's dimension? $m+1$
- is the following linear? chack clased under lin. combl. J

$$
T[p](x)=q(x) p(x) \text { for } q \in P^{(n)}
$$

- What is the space of outpunts? polynomials of degre $m+n, P^{(n+n)}$
- suppose $q(x)=x+1$. What is the motrix implementation of the tronsform?

$$
\begin{aligned}
& \text { - } T[p]=(x+1) p(x \mid \alpha)=\sum_{j=0}^{m}(x+1) \alpha_{j} x^{J}=\underbrace{\sum_{j=0} \alpha_{j} x^{J}}_{j=0}+\underbrace{\sum_{j=0}^{m} \alpha_{j} x^{j+1}}_{\text {degree } m+1}=\sum_{j=0}^{m+1} \beta_{j} x^{J} \\
& \beta_{j}(\alpha)=\left\{\begin{array}{cc}
\beta_{0} & : \alpha_{0} \\
\beta_{j} \text { if } 1 \leq j \leq m: \alpha_{j}+\alpha_{j-1} \\
\beta_{m+1} & : \alpha_{m}
\end{array}\right\} \begin{array}{c}
\text { the output } \beta_{j} \text { is a lin. } \\
\text { comb. of the } \alpha^{\prime} s
\end{array} \\
& \text { 1. a matrix } A \text { s.t. } \beta=A \alpha \text {. } A \text { is }(m+2) \times(m+1)
\end{aligned}
$$

- Ex: given the domain $\Omega=[0,1]$ the set of all continuously diffentioble, boundable
functions $f: \Omega \rightarrow \mathbb{R}$ is a vector space and:

1. $T(f)=\frac{d}{d x} f$ is a linear thosform, $\frac{d}{d x}(\alpha f+\beta g)=\alpha \frac{d}{d x} f+\beta \frac{d}{d x} g$
2. $T(f)=\int f$ is a linear trons berm, ...
3. $T(f)=\sum_{j=-L}^{p} \alpha_{j}\left(\frac{d}{d x}\right)^{\prime} f$ is a linear transform,...

- con we approximate these $w /$ a finite dimensional discretization?
- what errors do discrefization introduce?
let's toy to approximate $\frac{d}{d x}, f:[0,1] \rightarrow \mathbb{R}$, weill assure
f is periodic w/ period 1
- let's discectize the domain $\Omega=[0,1]$

$$
\left\{x_{j}\right\}_{j=0}^{n-1}, \Delta x=1 / n
$$

- replace functions over $\Omega \rightarrow$ samples: $\left\{f_{j} \xi_{j=0}^{n-1}, f_{j}=f\left(x_{j}\right) \quad\right.$ exact sampling of $\frac{d}{d x}$

$$
\text { samples: }\left\{f_{j}^{\prime}\right\}_{J=0}^{n-1}, f_{j}^{\prime}=\left.\frac{d}{d x} f(x)\right|_{x_{j}}
$$

$\begin{array}{ll}\text { approx: } & \hat{f}^{\prime} \cong f^{\prime}, \\ \text { convenes as } & \hat{f}^{\prime}= \\ \Delta x \rightarrow 0\end{array}$

- how to build $D(\Delta x)$? $\frac{d}{d x} f\left(x_{j}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{y}+h\right)-f\left(y_{j}\right)}{h} \simeq \frac{f\left(x_{1}+\Delta x\right)-f\left(x_{y}\right)}{\Delta x}$

- Ex: given $\Omega \subset \mathbb{R}^{d}$, compact, the set of boundable functions $f: \Omega \rightarrow \mathbb{R}$ is a vector space and, given $k: \Omega \times \Omega \rightarrow \mathbb{R},|K(a, y)|<\infty$ ace. $T(f)=\underbrace{\int_{\text {interpol transform }} K(x, y) f(y) d y}_{y \in \Omega}$ is a linear transform
- Error analysis: $f(x, \Delta x)-f(x,) \underbrace{\prime}(x$,

oh, ... ad in limes all differential 1 in ingot operations.

$$
\begin{aligned}
\frac{1}{\Delta x}\left(f\left(x_{y}+\Delta x\right) \cdot f\left(y_{j}\right)\right)=\frac{1}{\Delta x} & \left(f^{\prime}\left(y_{j}\right) \Delta x+\frac{1}{2}\left(\frac{d^{2}}{j_{2}} f\left(f_{y}\right)\right) \Delta x^{2}\right. \\
& \left.+\theta\left(\Delta x^{3}\right)\right) \\
=f^{\prime}\left(x_{j}\right) & +\frac{1}{2}\left(\frac{d}{d x}\right)^{2} f\left(y_{y}\right) \Delta x+\theta\left(\Delta x^{2}\right) .
\end{aligned}
$$

- the functional anoles to matrix vector products...
- Matrix Products:

$$
\langle\cdot, \cdot\rangle: V \times v \rightarrow \mathbb{C} \text { s. }
$$

1. bilinear: $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$

$$
\text { and }\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle
$$

2. $\langle\alpha u, v\rangle=\alpha\langle u, v\rangle=\langle u, \alpha v\rangle$
3. commutative: $\langle u, v\rangle=\langle v, u\rangle$
induces a norm:

$$
\|v\|^{2}=\langle v, v\rangle
$$

if v is finite dimensional then $\langle v, u\rangle=v^{*} M u$
for $v, u \in \mathbb{C}^{n}, M \in \mathbb{C}^{n \times n} \rho . d$, and $v^{*}=\left[\bar{v}_{1}, \bar{v}_{2}, \ldots \bar{v}_{n}\right]$
usually:

$$
\langle v, u\rangle=v^{*} u=\underset{\substack{j \text { sum of elementwise product }}}{\sum_{j=1}^{n} \bar{v}_{j} u_{j}} \longleftarrow \text { row col. }\left[\bar{v}_{1}, \bar{v}_{2}, \ldots \bar{v}_{n}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

2. Matrix-vectior product: given $A \in \mathbb{C}^{m \times n}, x \in \mathbb{C}^{n}$ then $b=A x$ where
(i) Elementwise: $b_{i}=\left[A_{*}\right]_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$
(ii) Row-wise: view A as a collection of rows, $\quad \leftarrow A=\left[\begin{array}{l}- \\ - \\ a_{1}- \\ -o_{2}- \\ \vdots \\ -a_{m}\end{array}\right] \begin{gathered}\text { each row is a vector } \\ \\ A x \text { os a series of inner products: }\end{gathered}$

$$
b_{i}=[A x]_{i}=\left(-i^{\text {th }} \text { row of } \bar{A}-\right) \cdot x
$$

Teach col. is a vector in
(iii) $\frac{\text { Colmun-wise: }}{\text { : view } A \text { as a collection of columns, } \leftarrow A=\left[\begin{array}{lll}1 & 1 & 1 \\ a_{1} & a_{2} & \ldots \\ 1 & a_{n} \\ 1 & 1 & 1\end{array}\right]\{\sim}$

$$
A x=\hat{\sum}_{j=1} x_{j} a_{j}^{\prime}
$$

τ coff. of this combination
3. Matrix-matrix products: given $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}$ then $C=A B \in \mathbb{C}^{m \times p}$ where:
(i) Element-wise: view A as a collection of rows, B of col's then:

(ii) Column -wise: $A B=A\left[\begin{array}{ll}\dot{b}_{1} & \ldots \\ i & \dot{b}_{r}\end{array}\right]=\left[\begin{array}{cc}A \dot{C}_{1} & \dot{A}^{\prime} b_{r} \\ 1 & \\ 1\end{array}\right] \quad$ (iii) row -wise...
-implies the outer product: $u \in \mathbb{C}^{n}, v \in \mathbb{C}^{m}$ then $u \in \mathbb{C}^{m \times 1}$ (col.), $v^{*} \in \mathbb{C}^{1 \times n}$ (row)
(iv) Con also compute $A B$ via a sum of outer products...

$$
A B=\sum_{k=1}^{n}\left(k^{\text {+h }} \text { col of } A\right)\left(k^{\text {H }} \text { row of } B\right)
$$

- Computational Cost/Complexity of Matrix Products: how expensive are these operations?

1. inner products of $x, y \in \mathbb{C}^{n} \rightarrow x^{*} y=\sum_{j=1}^{\dot{x}_{j}} \bar{x}_{j} y_{j} \Rightarrow{ }_{n-1}^{n}$ addition products $\} 2 n-1=\sigma(n)$
2. matrix-vector: $A \in \mathbb{C}^{m \times n}, x \in \mathbb{C}^{n} \rightarrow A x=m$ inner prod of vectors of size

$$
=\theta(m n)
$$

3. matrix -matrix: $A \in \mathbb{C}^{m=n}, B \in \mathbb{C}^{n \times p} \rightarrow A B=m p$ inner prod. \ldots

$$
=\sigma(m \cap p)
$$

- for ex: $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times n} \rightarrow$ comp. $A B$, cost $\theta\left(n^{3}\right)$
matrix-matrix malt. hos a cubic cost (in flops)

1 optimized or faster methat:
schoolbook: $\theta\left(n^{3}\right)$, Strassen: $\theta\left(n^{2.807}\right)$, Coppersmith. Wingoged $\theta\left(n^{2.3}\right)$

- Can also speed computation by exploiting structure in our matrices:

1. if A is sparse (H of nonzero entries of $A=|\operatorname{supp}(A)| \ll \mathrm{mn}$) use sparse operations, cost $A x=O(1 \sup p(A) \mid)$

$$
\cdot \text { let } \operatorname{supp}(A)=\left\{i, j \text { sit. } a_{i j} \neq 0\right\}
$$

- Then As only requires 1 mull. $\$ 1$ addition per $a_{i j} \neq 0$ so cost using sparse operations is $\sigma(1$ supp $(A) 1)$
- Ex: $D(\Delta x)$ has \mid supp $1=2 n$, size n^{2}, cost of $D(\Delta x) f$ is $\theta\left(n^{2}\right)$ wont exploiting sparsity, $\theta(n)$ w/ sparsity.

2. symmetries of A to speed comp.
-Ex: if A implements a DFT on 1 samples use multiseale sym. of A to perform $A x=\theta(n \ln (n))$

- other examples: Fast Hadamord, foot Handel (constant down diagonals)
- Stability \& Conditioning of Linear Transforms: usually requires a different perspective on $T(x)=A \times \ldots$
- Spectral Perspective:
- matrices A con be factored into "simplex" factors: $A=F_{1} F_{2} \ldots F_{l}=\prod_{j=1}^{R} F_{j}$
where the factors F_{j} each perform a "simple" transform.
- Key factorizations:

1. if $A \in \mathbb{C}^{n \times n}$ is diagonalizable $\left(\exists \cap\right.$ lin ind vectors $v \in\left\{v_{j} \xi_{j=1}^{n}\right.$ st. $A v_{j}=\lambda_{j} v_{j}$
for some scolalar $\lambda_{\mathrm{J}} \in \mathbb{C}$)
then: $A=V \Lambda V^{-1}$

2. Singular Value Decamp (SVD): given any $A \in \mathbb{C}^{m \times n}$
then: $A=\cup \sum V^{*}$

- Eigenvoluc Example: if $A \in \mathbb{C}^{n \times n} w / n$ linearly independent egganeaturs r then $\forall x \in \mathbb{C}^{\wedge} \quad \exists \quad y \in \mathbb{C}^{\wedge}$ sit $x=\sum_{j=1} y_{j}^{\dot{j}_{1}}=v_{y} \Rightarrow y=v^{-1} x$

$$
\left.\therefore A x=V \Delta V_{x}^{-1}=V \Lambda_{y}=\sum_{j=1}\left(\Lambda_{y}\right) \dot{v}_{1}=\hat{\sum}_{j=1}^{n} \lambda_{1} y_{j}\right) v_{j}
$$

- Suppose: $A=\left[\begin{array}{ll}5 / 4 & 3 / 4 \\ 3 / 4 & 5 / 4\end{array}\right]\left\{\begin{array}{l}\text { then } \lambda=2,1 / 2 \\ \text { so }\end{array} \Lambda=\left[\begin{array}{ll}2 & 0 \\ 0 & 1 / 2\end{array}\right]\left\{\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \quad \begin{array}{l}\text { and } V=\left[\begin{array}{ll} & \\ V^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] \text { exists so }\end{array}\right]\end{array}\right\} V^{-1}$

- SD: $A=U \sum V^{*}$ (where U, V hare \perp normalized columns, \sum diagonal, real, nonnegative, nonincreasing) takes one orthonormal basis, $V=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$, and mops it to an orthogonal basis, $U \mathcal{V}=\left\{\sigma_{1} u_{1}, \sigma_{2} u_{2}, \cdots \sigma_{n} u_{n}\right\}$
- Can help to visualize the transform of the unit ball

$v^{\top}\{$ rotate/ceflect

$\checkmark,<$ ototelreflect

1. rotation, but rotation doesn't change the unit ball (ignore v^{\top})
ball: $\{$ all x s.f. $\|x\|=1\}$
2. multiply by \mathcal{L}, scale the directions

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] b_{y} \sigma_{1},\left[\begin{array}{l}
0 \\
1
\end{array}\right] b_{y} \sigma_{z}
$$

turns the unit ball into an ellipse with axes lengths equal to the singular
values
3. rotation, this one matters b/c the ellipse is not rotationally

- need: $V e_{1}=U\left[\begin{array}{l}1 \\ 0\end{array}\right]=u_{1}$

$$
U e_{2}=U\left[\begin{array}{l}
0 \\
i
\end{array}\right]=u_{2}
$$

that means that the columns
of U, u_{1}, u_{2}, \ldots are the directions
of the principal axes of the ellipse.
orthonormal basis for \mathbb{R}^{n} orthogonal basis for range $(A) \subseteq \mathbb{R}^{m}$

- so, A sends right singular vectors $\left\{v_{j}\right\}_{j=1}^{n}$ to scaled left singular vectors $\left\{g_{j} y_{j}\right\}_{j=1}$
- what about A^{\top} ? $A=U \Sigma V^{\top}$
$A^{\top}=V \varepsilon^{\top} U^{\top}$ so V plays the role of U for A^{\top}
exchange right \& left singular vectors, singular values unchanged
- the singular vectors v_{1}, v_{2}, \ldots orient the ellipse associated with A^{\top}
- A^{\top} sends $\left\{u_{j}\right\}_{j=1}^{m}$ to $\left\{\sigma_{J} v_{j}\right\}_{j=1}$

Week 3 -Linear Transforms \$ Otthogonalization
Tuesday - 4/04/2023

- Logistics:
- HWI due tonight recept lecture II
- Reading: finish Chapter II. lecture 16
- HW 2 assigned, due next Tuesday
- Project 1 will post Wednesday

Goals:

- Linear Transforms:
- The spectral perspective
- Conditioning Stability
- Linear Transforms continued...
- Spectral Perspective:
- matrices A con be factored into "simplex" factors: $A=F_{1} F_{2} \ldots F_{l}=\prod_{j=1}^{R} F_{j}$
where the factors F_{j} each perform a "simple" tronsforme.
- Key factorizations:

1. if $A \in \mathbb{C}^{n \times n}$ is diagonalizable $\left(\exists \cap\right.$ lin ind vectors $v \in\left\{v_{j} \xi_{j=1}^{n}\right.$ st. $A v_{j}=\lambda_{j} v$ for some scalar $\lambda_{j} \in \mathbb{C}$)
then: $A=V \Lambda V^{-1}$

2. Singular Value Decamp (SVD): given any $A \in \mathbb{C}^{m \times n}$
then: $A=\cup \mathcal{V}{ }^{*}$
where: U is mam has 1 , normalized col's
relation to eigenvolues/vectars

$$
\left.\begin{array}{l}
V \text { is } n \times n: \ldots \\
\mathcal{E}_{\text {is }}^{(n \times n)} \text { diagoorol, } \sigma_{1} \in \mathbb{R}^{+}, \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots \sigma_{\text {an k } \geq(n)}
\end{array}\right\}
$$

- $\sigma_{j}^{2}=\lambda_{j}\left(A^{*} A\right)=\lambda_{\rho}\left(A A^{+}\right)$lop $(0 \mathrm{met})$
- $u_{j}=$ eigenvectors of $A A^{*}$
- $v_{j}=$ eigenectus of $A^{*} A$.
- Eigenvoluc Example: if $A \in \mathbb{C}^{n \times n} w / n$ linearly independent egganeaturs r then $\forall x \in \mathbb{C}^{\wedge} \quad \exists \quad y \in \mathbb{C}^{\wedge}$ sit $x=\sum_{j=1} y_{j}^{\dot{j}_{1}}=v_{y} \Rightarrow y=v^{-1} x$

$$
\left.\therefore A x=V \Delta V_{x}^{-1}=V \Lambda_{y}=\sum_{j=1}\left(\Lambda_{y}\right) \dot{v}_{1}=\hat{\sum}_{j=1}^{n} \lambda_{1} y_{j}\right) v_{j}
$$

- Suppose: $A=\left[\begin{array}{ll}5 / 4 & 3 / 4 \\ 3 / 4 & 5 / 4\end{array}\right]\left\{\begin{array}{l}\text { then } \lambda=2,1 / 2 \\ \text { so }\end{array} \Lambda=\left[\begin{array}{ll}2 & 0 \\ 0 & 1 / 2\end{array}\right]\left\{\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \quad \begin{array}{l}\text { and } V=\left[\begin{array}{ll} & \\ V^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] \text { exists so }\end{array}\right]\end{array}\right\} V^{-1}$

- SD: $A=U \sum V^{*}$ (where U, V hare \perp normalized columns, \sum diagonal, real, nonnegative, nonincreasing) takes one orthonormal basis, $V=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$, and mops it to an orthogonal basis, $U \mathcal{V}=\left\{\sigma_{1} u_{1}, \sigma_{2} u_{2}, \cdots \sigma_{n} u_{n}\right\}$
- Can help to visualize the transform of the unit ball

$v^{*}\{$ rotate/ reflect

$\checkmark \ll$ otatelreflect

1. rotation, but rotation doesn't change the unit ball (ignore v^{\top})
ball: $\{$ all x s.f. $\|x\|=1\}$
2. multiply by \mathcal{L}, scale the directions

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] b_{y} \sigma_{1},\left[\begin{array}{l}
0 \\
1
\end{array}\right] b_{y} \sigma_{z}
$$

turns the unit ball into an ellipse with axes lengths equal to the singular
values
3. rotation, this one matters b/c the ellipse is not rotationally

- need: $V e_{1}=U\left[\begin{array}{l}1 \\ 0\end{array}\right]=u_{1}$

$$
U e_{2}=U\left[\begin{array}{l}
0 \\
i
\end{array}\right]=u_{2}
$$

that means that the columns
of U, u_{1}, u_{2}, \ldots are the directions
of the principal axes of the ellipse.
orthonormal basis for \mathbb{R}^{n} orthogonal basis for range $(A) \subseteq \mathbb{R}^{m}$

- so, A sends right singular vectors $\left\{v_{j}\right\}_{j=1}^{n}$ to scaled left singular vectors $\left\{g_{j} y_{j}\right\}_{j=1}$
- what about A^{*} ? $A=U \sum V^{*}$
$A^{*}=\underbrace{\top} U^{*}$ so V plays the role of U for A^{\top}
exchange right \& left singular vectors, singular values unchanged
- the singular vectors v_{1}, v_{2}, \ldots orient the ellipse associated with A^{\top}
- A^{*} sends $\left\{u_{j}\right\}_{j=1}^{m}$ to $\left\{\sigma_{j} v_{j}\right\}_{j=1} \cdot A^{-1}$ sends $\left\{u_{j}\right\}_{j=1}^{n}$ 10 $\left\{\frac{1}{\sigma_{j}} v_{j}\right\}_{j=1}^{n}$
- The spectral perspective helps understand transforms, their induced norms, B their conditioning
- Recall, given $A \in \mathbb{C}^{m \times n}$, and a pair of vector norms $\overbrace{\|\cdot\|_{0},}^{\text {ineris }} \overbrace{1}^{\text {outports }} \|_{b}$ the induced a, b norm of A is

$$
\|A\|_{a, b}=\sup _{\substack{x \in \in \\ x \neq 0}}\left\{\frac{\|A x\|_{b}}{\|\times\|_{a}}\right\}=\sup _{\|x\|_{a}=1}\left\{\|A \times\|_{b}\right\}
$$

- Ex: $\|A\|_{3,1}=\sup _{\|x\|_{3}=1}\left\{\|A \times\|_{1}\right\}$

- generically a hard optimization problem (Ex: even for $a=b=2$, Euclidean distance), often seek bounds
- bounds on the induced norms arise naturally from the spectrum.
- Def: given $A \in \mathbb{C}^{m \times m}$, the spectral radius of $A, \rho(A)=\max _{\jmath}\left\{\left|\lambda_{j}(A)\right|\right\}$ (magnitude of the largest eigenvalue)
-then:

$$
\rho(A) \leq\|A\| \text { for any indued norm... }
$$

- More generally, consider the numerical range of $A: W(A)=\underset{x \neq 0}{\operatorname{rangge}}\left(R_{A}(x)\right)$ where $\underbrace{R_{A}(x)}_{\text {"Ry yb }}=\frac{x^{*} A_{x}}{x^{*} x}$ Roykegh Quotient"
- notice, if v is an eigenvector of $A, A v=\lambda v$ then $R_{A}(v)=\frac{v^{*} A v}{v^{*} v}=\frac{v^{*} \lambda v}{v^{* v}}=\lambda$
- The numerical range is a compact (closed and bounded), convex subset of © which contains all eigenvalues of A
- if A is:

then $W(A)$ is the convex hull of the eigenvectors

- especially useful for studying $\|A\|_{z}$ (induced by $\|x\|_{2}=\sqrt{x^{*} x}$)
- Def: $\|A\|_{2}=\sup _{\|x\|_{2}=1}\left\{\|A \times\|_{2}\right\}=$ largest ratio of output length to input length.
then: $\|A\|_{2}^{2}=\sup _{x \neq 0}\left\{\frac{\|A x\|_{2}^{2}}{\|x\|_{2}^{2}}\right\}=\sup _{x \neq 0}\left\{\frac{x^{*} A^{*} A x}{x^{*} x}\right\}=\sup _{x \neq 0}\left\{R_{A^{*} A}(x)\right\}=\sup \left\{|w| \mid w \in W\left(A^{*} A\right)\right\}$
- Fact: $A^{*} A$ is square for all $A \in \mathbb{C}^{m \times n} \quad\left(A^{*} A \in \mathbb{C}^{n \times n}\right)$
and is normal $\left(\left(A^{*} A\right)^{*}=A^{*} A^{*}=A^{*} A \quad \therefore\left(A^{*} A\right)^{*}\left(A^{*} A\right)=\left(A^{*} A\right)\left(A^{*} A\right)^{*}\right)$
thus unitarily diogonalizable...

$$
\left.\left.\begin{array}{rl}
\therefore W\left(A^{*} A\right) & =\text { convex hr\| of }\left\{\lambda_{j}\left(A^{*} A\right)\right\} \\
& =\text { convex ha\| of }\left\{\sigma_{j}^{2}(A)\right\}
\end{array}\right\} \text { so, } \sup \left\{|w| \| w \in\left(A^{*} A\right)\right\}=\operatorname{mox}\left\{\sigma_{j}^{2}(A)\right\}\right\}
$$

moral: the indued 2 -nom of a matrix is its largest (first) singular value.

- why? recall the geometry of the SVD

the length of the longest principal axis is σ_{1} (input is v_{1})
- Allows us to easily compute: $\left\|A^{*}\right\|_{2}=\sigma_{m a x}(A)=\|A\|_{2}$
$\left(A^{*}\right.$ tokes $\left.u_{j} \rightarrow \sigma_{j} v_{j}\right)$

$$
\left\|A^{-1}\right\|_{2}=1 / \sigma_{\min }(A)
$$

$\left(A^{-1}\right.$ tokes $\left.u_{j} \rightarrow \frac{1}{\sigma_{j}} v_{j}\right)$

- Stability of Linear Transforms:
- linear trons formations (matrix products) are stable (forward stable, ie. $f(A, B)=A B$ then $\tilde{f}(A, B)=A B+\delta f(A, B)$ where $\left.\frac{|\delta f|}{\substack{|A|||\mid \\ \uparrow \\ \text { entmoise }}}=\sigma\left(\varepsilon_{m}\right)\right)$
- ines products $\$$ matrix -vector products are stable $\$$ backward stable
(if $f(A, x)=A_{x}, \tilde{f}(A, x)=A_{x}+\delta f(A, x), \quad|\delta f| /|A||x|=\sigma\left(\varepsilon_{m}\right)$
see resources on
and $\tilde{f}(A, x)=f(\tilde{A}, x)$ where $\tilde{A}=A+\delta A, \frac{|\delta A|}{|A|}=\sigma\left(\varepsilon_{m}\right)$
- outer products are stable but not backward stable
- generally: matrix products are stable \$ backward stable
if reduce dimension (input \rightarrow output)
not backward stable if increase dimension.
- the degree of stability (constant in $O\left(\varepsilon_{m}\right)$ statements)
depends on the conditioning of the product...
- Ex: compute $f(A, x)=A x$
then $\frac{\|\tilde{f}(A, x)-f(A, x)\|}{\|f(A, x)\|}=\sigma\left(k(A) \varepsilon_{m}\right)$
condition \# of A
- Conditioning of linear transforms. given $A \in \mathbb{C}^{n \times n}$, how ill/well conditioned are products w/ A ?
problem is. puffer the transformation
- given $A \in \mathbb{C}^{m \times n}, x \in \mathbb{C}^{n}, \overline{f(x)}=A x$, and some nom $\|\cdot\|$ on $\mathbb{C}^{m} \$ \mathbb{C}^{n}$
then:
- want an $x \mathbb{1}$ bound,
- Def: the condition H of $A, K(A)=\sup _{x \neq 0}\{K(A, x)\}=\|A\| \sup _{x \neq 0}\left\{\frac{\|\times\|}{\|A \times\|}\right\}$
- if $A \in \mathbb{C}^{m \times m}$ and is invertible then 3 sit. $A x=y \Leftrightarrow A^{-1} y=x$ for all x (if non-innetilitle use the psuedo-inverse, A^{\dagger} over $y \in$ rouge (A))
- then: $K(A, x)=\|A\| \frac{\|x\|}{\|A x\|}=\|A\| \frac{\left\|A^{-1} y\right\|}{\left\|y^{\prime}\right\|}$ so $K(A)=\sup _{y \neq 0}\left\{\|A\| \frac{\left\|A^{-1} y^{\prime}\right\|}{\| y^{\|}}\right\}=\|A\| \sup _{y t_{0}}\left\{\frac{\left\|A^{-1} y\right\|}{\| y^{\prime \prime}}\right\}=\|A\|\left\|A^{-1}\right\|$
so, $K(A, x) \leq K(A) \quad \forall x$ where:
- the condition $\#$ of A is: $K(A)=\|A\|\left\|A^{-1}\right\|$
- E xx: using $\|\cdot\|_{2},\|A\|=\sigma_{\text {max }},\left\|A^{-1}\right\|=\max _{j}\left\{\%_{1}, 1 \sigma_{2}, \ldots, \sigma_{1}\right\}=\frac{1}{\sigma_{\text {min }}}$
s. $K(A)=\frac{\sigma_{\text {max }}}{\sigma_{\text {min }}} \geq 1 \tau_{\text {alias }}$ lose ocuwoy...
- notice $\|A\| \| A^{-1 \|}$ is symuctic under ineresion of A
so:

$$
K(A)=\|A\|\left\|A^{-1}\right\|=K\left(A^{-1}\right)
$$

- doing B undoing a liner transformation have the some worst case conditioning.
-The: given $A \in \mathbb{C}^{\text {ax }}$, invertible and $f(x)=A x, f^{-1}(x)=A^{-1 x}$ Ø thus: the wast case conditioning of f and f^{-1}
and a norm $\|\cdot\|$ on \mathbb{C} ", then:

$$
\left.\begin{array}{l}
K\left(A_{,} x\right)=\|A\| \frac{\|x\|}{\|x+\|} \leq\|A\|\left\|A^{-1}\right\| \\
K\left(A^{-1} y\right)=\left\|A^{-}\right\| \frac{\| y}{\left\|A A^{2}+\right\|} \leq\left\|A^{-}\right\|\|A\|
\end{array}\right\}=K(A)
$$

over all menes is $K(A)$,

$$
\begin{aligned}
& \frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=\sigma(k(A, x) \varepsilon) \leq \sigma(k(A) \varepsilon) \\
& \frac{\left\|\tilde{f}^{\prime}()-f^{\prime}(y)\right\|}{\left\|f^{\prime}(y)\right\|}=\sigma\left(k\left(A_{1}^{\prime}\right) \varepsilon\right) \leq \sigma(k(A) \varepsilon)
\end{aligned}
$$

-if A^{-1} does not exist, use the p suceb-introse, $K(A)=\sigma_{n o x} / 6$ min fo
-if use $\|$ - $\|_{z}$ achieve equality (worst case inert) when x is $v_{\text {min }}, y$ is u_{n}...

- Moral: A is ill-conditioned if:
I. $\|A\| l l$ is large \Rightarrow amplifies some small inapt (small in, big out)

2. $\left\|A^{-1}\right\|$ i large \Rightarrow compresses a large input (big in, small out)

so, optimally conditioned, $K(A)=1$ if inputs dort clone length ($\left\|A_{x}\right\|=\|x\|$ for $a \| x$. . require special type of A)

- $Q_{\text {uestion }}$: why does the reese problem (solve $A_{x}=y$, apply A^{-1})
effect the conditioning of the forward problem (compute A_{x})?
- Question: why does the reverse problem (solve $A_{x}=y$, apply A^{-1}) effect the conditioning of the forward problem (compute A_{x})?

. obvious for the inersse/reverse problem if disparate inputs \rightarrow similes outports then siriviar outputs could come from disparate inputs...
leave for inure probleness nit
- notice: compressing inputs requires combining large \#'s to numerically unstable $\left.\begin{array}{llll}\text { make small ff's (either divide by large ", } \\ \text { multiply by small 4. or subtract B nearly cancel) }\end{array}\right\} \begin{aligned} & \text { provokes cancellation } \\ & \text { errors... }\end{aligned}$
- so, arises from relative notion of error/ number system
- recall:
- Ex: $\left\|A^{-1}\right\|$ is large if col's of A are close to linearly dependent (parallel under combination) then large x can be mapped to small by $A \ldots$
let $A=\frac{1}{2}\left[\begin{array}{ll}1 & 1-\varepsilon \\ 1 & 1+\varepsilon\end{array}\right]$ for small $\varepsilon \neq 0, \varepsilon<1$.

-then A^{-1} exists. ill-conditioned for small $E . .$. find large x st. $A x$ is very small anear 0 , col's nearly cancel)
-pick: $x=\alpha\left[\begin{array}{l}1 \\ 1\end{array}\right]$ then $\|x\|=\theta(|\alpha|)$

$$
A x=\frac{\alpha}{2}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1-\varepsilon \\
1+\varepsilon
\end{array}\right]\right)=\frac{\alpha}{2}\left[\begin{array}{c}
\varepsilon \\
-\varepsilon
\end{array}\right] \text { so }\|A \times\|=\sigma(|\alpha||\varepsilon|)
$$

then: $\frac{\|\times\|}{\left\|A_{x}\right\|}=\sigma\left(\left|\varepsilon^{-1}\right|\right)$ can make $\|A\|=\theta\left(|\varepsilon|^{-1}\right)$ arbitrarily large as $\varepsilon \rightarrow 0$

- ill-conditioned since the input $x \rightarrow A x$ requires subtracting two large (a>> ε), similar \#'s
-need $\frac{\alpha}{\varepsilon}-\left(\frac{\alpha}{\varepsilon}+\frac{\varepsilon \alpha}{\bar{z}}\right)=\varepsilon \frac{\alpha}{2}$, requires cancellation.

Thursday - 04/06/2023 - Orthogonality, Projection $\$$ Orthogonalization

- Logistics:
- Reading, HW $2 \$$ Project 1 posted
- Today's lecture will come in 2 parts:
- 12:30-1:20 today in class
- last half recorded β posted to canvas
- Goals:
- What transforms are optimally conditioned?
- How do we optimize the conditioning of a basis?
- leads to:
- Orthonormal/Unitary matrices
- Projection
- Orthogonalization (Gram-Schmidt, mGS and QR)

Question: if $K(A)=\|A\|\left\|A^{-1}\right\|$, what A are optimally conditioned?

$$
\begin{aligned}
& \cdot\|A\|=\sup _{\|\times x\|=1}\left\{\left\|A_{x}\right\|\right\}=\text { "max amplification of length" } \\
& \cdot\left\|A^{-1}\right\|=\sup _{\|y\|=1}\left\{\left\|A_{y}^{-1}\right\|\right\}=\left[\inf _{\|\times\|=1}\left\{\left\|A_{x}\right\|\right\}\right]^{-1}=\text { "max compression of length" } \\
& \text { so, } K(A)=\sup _{\|\times\|=1}\left\{\left\|A_{x}\right\|\right\} \\
& \inf _{\|x\|=1}\{\|A x\|\} \geq 1
\end{aligned}
$$

to acheive $K(A)=1$, we need $\sup _{\|x\|=1}\{\|A \times\|\}=\inf _{\|x\|=1}\{\|A \times\|\}$

$$
\therefore \text { need }\|A x\|=1 \text { if }\|x\|=1 \quad \forall \operatorname{such} x
$$

that is $\|A x\| /\|x\|=1 \quad \forall x \neq 0 \Rightarrow\left\|A_{x}\right\|=\|x\|$
so $K(A)=1$ if $T(x)=A x$ preserves length... $\|A x\|=\|x\| \forall x$

- using $\|\cdot\|_{z}, K(A)=\frac{\sigma_{\text {mai }}}{\sigma_{\text {min }}}=1$ if all $\sigma_{j}(A)=\sigma$ so, $A \cdot($ unit ba $\|) \rightarrow$ ellipse w/ principle axes of length $6 \ldots$ the unit ball, $\frac{1}{6} A$ must preserve length... $\| \underbrace{\|x\|_{2}=\sigma\|x\|_{2}} \forall x$
- a very special class of A... unitary matrices (up to scaling)

Unity /Orthonormal Matrices:

- Def: given an inner product $\langle\cdot, \cdot\rangle$ on a vector space V $u, v \in V$ are orthogonal w.r.t. <;, \rangle iff

$$
\langle u, v\rangle=0
$$

- usually ${ }_{1}, u, v \in \mathbb{C}^{\wedge}, u^{*} v=0$, interpret $u \perp v$
- Def: $A \in \mathbb{C}^{m \times n}(m \geq n)$ is orthonormal (has 1 norm col's)
if:

1. $\left\|a_{i}\right\|=1 \quad \forall i \quad\left(\left\|a_{i}\right\|^{2}=\left\langle a_{i}, a_{i}\right\rangle\right) \leftarrow$ "normal"
2. $a_{i} \perp a_{j} \forall i \neq j \in[1, n] \leftarrow$ mutually or thegonal.

- Def: A is unitary if it is square B hos 1 norm col's
- notation: often use Q for 1 norm matrices
- Properties:

1. $Q \in \mathbb{C}^{m \times n}, \perp$ norm col's iff $Q^{*} Q=I_{n \times n}$

$$
\text { - why? }\left[Q^{*} Q\right]_{i j}=q_{i}^{*} q_{j}= \begin{cases}=0 & \text { if if } \\ =1 & \text { if } i=j\end{cases}
$$

2. Q is unitary iff $Q^{*}=Q^{-1} \Rightarrow Q^{*} Q=I$

$$
\left.Q Q^{*}=I .\right\} \text { exercise }
$$

3. if Q is unitary, then $K(Q)=1, K\left(Q^{*}\right)=1$

- why? ... consequence of...

4. if Q is unitary, then $T(x)=Q_{x},\langle T(x), T(y)\rangle=\langle x, y\rangle$

$$
\langle T(x), T(y)\rangle=\left\langle Q_{x}, Q_{y}\right\rangle=\left(Q_{x}\right)^{*} Q_{y}=x^{*} \underbrace{Q^{*} Q_{y}}_{I} y=x^{*} y=\langle x, y\rangle
$$

- preserve lengths and angles ... "rigid body" transfamations
rotations reflections...
- the fact that, if Q has \perp norm col's then $Q^{*} Q=I$ is very powerful...
- Ex: Suppose $Q \in \mathbb{C}^{m \times n}, Q=\left\{q_{j}\right\}_{j=1}^{n}$ where $\left\{q_{j}\right\}$ are a basis for a subspace $\left.\left(S=\operatorname{span}\left(\varepsilon_{j}\right\}_{j=1}^{n}\right)=\operatorname{range}(Q)\right)$
then $\forall x \in S \quad \exists y \in \mathbb{C}^{n}$ si.

$$
x=\sum_{j=1}^{n} y_{j} \dot{j}_{1}=Q_{y} \text { for some } y \ldots
$$

conversion $x \rightarrow y$, solve $Q_{y}=x$

$$
y=I_{y}=Q^{*} Q_{y}=Q^{*} x .
$$

$$
\text { (entrywise: } y_{j}=\left[Q^{*} \times\right]_{j}=q_{j}^{*} x=q_{j}^{*} \sum_{k=1}^{n} y_{k} q_{k}=\sum_{k=1}^{n} y_{k} \underbrace{}_{\substack{ \\=q_{j}, q_{j} \\=1 \\ q_{j} \\ q_{j=k}}}=y_{j} \text {) }
$$

- expense: a inner products, vectors lengthen cost $\sigma(\mathrm{nm})$
- relative to generic problem, solve

$$
\begin{aligned}
& A_{y}=x \text { for } A \in \mathbb{C}^{m \times n} \\
& \text { cubic in } \operatorname{dim} \text { of } A
\end{aligned}
$$

-and, optimally condition

- motivates working wo orthonormal matrices...
- begs the question, what is $Q Q^{*}$ given $Q \in \mathbb{C}^{m \times n}$, orthonormal?
$Q Q^{*}$ is the orthizonal projector onto range $(Q)=\operatorname{spon}\left\{q_{j} \xi_{j=1}^{n}\right.$.
- why? well, easiest case, $Q \in \mathbb{C}^{m \times 1}, \quad Q=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

$$
Q Q={\underset{q}{1}}_{q_{1}}^{1}-q_{1}^{*}-\stackrel{\uparrow}{\downarrow}\left[\begin{array}{l}
\sim m \longrightarrow \\
p_{1 a}
\end{array}\right], \quad x_{11 q_{1}}=\frac{\left(q_{1}^{*} x\right)}{\left\|q_{1}\right\|^{2}} q_{1}=\left(q_{1} q_{1}^{*}\right) x=p_{11 a} *
$$

- Projection, a review:
- Projection.
- Projection onto Lines: say we are given a line $11 v$, and a point in spare specified w

projection of w onto $v=a$ point on the line II v "where w casts it's shadow"
if $W_{11 v}$ is the projection of w onto \checkmark then the triangle formed by $w, w_{\text {IV, }}$ origin is a right triangle
- how to compute $w_{1 v}$?

well, $w_{11 v}$ is $\|$ to v so $w=\alpha \hat{v}=\alpha \frac{v}{\|v\|}$ for some scalar α.
trig:

$$
\left\|w_{\| v}\right\|=\|w\| \cos \left(\theta_{w v}\right)
$$

since $w_{11 v}, w_{\perp v}$ and v
form a right triangle w/ hypotenuse length WwII adjacent side length $\left\|w_{n v}\right\|$ and angle $\theta_{w v}$

- notice: $w=w_{11 v}+w_{L v}, w_{1 v v} \perp w_{L v}$

$$
w_{L v}=w-w_{u v}
$$

$$
\left\|w_{u v}\right\|=\|\alpha \hat{v}\|=|\alpha|\|\hat{v}\|=|\alpha|
$$

$$
=1 \text {, unit vector }
$$

$$
\therefore \quad|\alpha|=\|w\| \cos \left(\theta_{w_{0}}\right)=\|w\|_{\| v v^{\top} w}^{\|v\|^{\top}}=\frac{v^{\top} w}{\|v\|}
$$

so

$$
\begin{aligned}
w_{11 v}=\alpha \hat{v}=\left(\frac{v^{\top} w}{\| v v_{11}}\right) \frac{v}{\| v v_{11}}=\left(\frac{v^{\top} w}{\|v v\|^{2}}\right) v & =(\underbrace{\left(\frac{v^{\top} w}{v^{\top} v}\right) v}_{a} \\
& =v\left(\frac{v^{\top} w}{v^{\top} v}\right)=\left(\frac{v v^{\top}}{v^{\top} v}\right) w \\
& =\left(\frac{1}{\|v\|^{\prime}} v v^{\top}\right) w=\underbrace{\left(\hat{v} \hat{v}^{\top}\right) w}_{0}
\end{aligned}
$$

- Projector onto $v: P_{11 v}=\left(\hat{v} \hat{v}^{\top}\right)=\frac{1}{\| v v_{12}}\left(v v^{\top}\right)$
$P_{n v}=$ matrix that projects onto \sim
- Constructing 1 Projectors:

$$
\cdot\left(\hat{v} \hat{v}^{\top}\right)^{2}=\hat{v} \hat{v}^{\top} \hat{v} \hat{v}^{\top}=\hat{v}(\underbrace{\hat{v}^{\top}}_{\|\hat{v}\|^{2}=1} \hat{\dot{v}}) \hat{v}^{\top}
$$

- onto a line $v: P_{u v}=\hat{v} \hat{v}^{\top}=\frac{1}{\|v\|^{2}}\left(v v^{\top}\right) \leftarrow$ let's check: $\quad=\hat{v} \cdot 1 \hat{v}^{\top}=\hat{v} \hat{v}^{\top}\|\hat{v}\|^{2}=1$ 1 projector onto range (v)

$$
\cdot\left(\hat{v} \hat{v}^{\top}\right)^{\top}=\left(\hat{v}^{\top}\right)^{\top} \hat{v}^{\top}=\hat{v} \hat{v}^{\top}
$$

- onto a subspace V : let $Q_{\nu}=\left[9_{1}, q_{2}, \cdots, q_{2}\right]$ be an \perp matrix
whose columns form a basis for $\nu \in \mathbb{R}^{m}$

then range $\left(Q_{\nu}\right)=\nu$.
we con project onto each basis vector q_{J}

$$
\text { via } P_{\text {"q }}=\frac{1}{\|_{\eta}, 1 q^{\prime 2}}\left(q_{j} q_{j}^{\top}\right)=q q_{j}^{\top}
$$

so $w_{1!\Omega}=\left(9, g^{\top}\right)_{w}$

$$
w_{11 \nu} \text { is in } \nu=\operatorname{spar}\left(\xi_{1}, \ldots, q, 3\right) \text { so } w_{11 \nu} \text { is a linear }
$$

combination of the basis vectors...

then: $w_{11 \nu}=\left(q, q_{1}^{\top}\right) w+\left(q_{2} q_{2}^{\top}\right) w+\ldots\left(q, q_{1}^{\top}\right)_{w}$

$$
=\left(q_{1} q_{1}^{\top}+q_{2} q_{2}^{\top}+\cdots q_{1} q_{1}^{\top}\right) w
$$

so: $\quad P_{11 \nu}=\sum_{j=1}^{d} q_{j} q_{j}{ }^{\top}=q_{1} q_{1}^{\top}+q_{2} q_{z}{ }^{\top}+\ldots q_{d} q_{d}{ }^{\top}$
or, more concisely: $P_{u \nu}=Q_{\nu} Q_{\nu}^{\top}$

- why? onter-prodect convention

$$
\begin{aligned}
& =\sum_{j=1}^{d} q_{j} g^{\top} \\
& \text { so: } P_{u v} w=\sum_{j=1}^{d}\left(q, g_{j}^{\top} w\right)=\sum_{j=1}^{d} q_{j}^{1}\left(q_{j}^{\top} w\right)=\sum_{j=1}^{d}\left(q_{j}^{\top} w\right) q_{j}^{\prime}
\end{aligned}
$$

compare to:
let $Q=\left[\begin{array}{l:l}Q_{v} & Q_{\perp v}\end{array}\right]$ be \perp and $n \times n$, then $\operatorname{range}(Q)=\mathbb{R}^{m}$ $w=Q_{y}$ for some y. Q is 1 so $y=Q^{\top} w$

$$
y_{j}=\left(q_{j}^{\top} w\right) \quad \therefore \quad w=\sum_{j=1}^{\sum_{j}}\left(q_{j}^{\top} w\right) q_{j}=\underbrace{\left[\sum_{j=1}^{d}\left(q_{j}^{\top} w\right) q_{j}^{\prime}\right.}_{w_{u v}}]_{1}+\underbrace{\left[\sum_{j=d 1}\left(q_{j}^{\top} w\right)\right.}_{w_{1} v} q_{j}^{1}]
$$

- why does this work?
- Suppose we have a subspace V
 how do we build P_{ν} the orthogonal projector onto ν
- idea: suppose $\nu \in \mathbb{R}^{m}$, then let Q_{ν} be an \perp basis for ν. let ν^{\perp} be the subspace $\perp \nu$. let $Q_{v \perp}$ be \perp basis for ν^{\perp}
then build $Q \perp$ basis \mathbb{R}^{m}

$$
Q=\left[\left|\left|Q_{\nu}\right| \|_{\vdots}^{1} Q_{\nu} \perp^{\prime}\right]\right.
$$

- now, Q is $m \times m \$$ orthonormal so we can multiply by Q^{\top} to change coordinates
"Q" coordinate system
coordinates
associated w / V^{\perp}
in this coordinate system $w_{1 u} \mapsto$ the first $\operatorname{dim}(v)$ components of $Q^{\top} w$
here \perp projection onto ν is easy

$$
\left.\left[\begin{array}{c}
Q_{v}^{\top} w \\
\hdashline Q_{v}{ }^{\top} w
\end{array}\right] \xrightarrow[\text { project }]{ }\left[\begin{array}{c}
Q_{v}^{\top} w \\
\hdashline 0 \\
0
\end{array}\right]\right\}
$$

but now, moving back to my original coordinates is also easy since I jest multiply by Q

$$
\begin{aligned}
w_{11 \nu} & =\left(Q_{\nu} Q_{\nu}^{\top}\right) w \\
\text { so: } P_{\| \nu} & =Q_{\nu} Q_{\nu}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& w_{n \nu}=Q^{Q}\left[\begin{array}{c}
Q_{\nu}{ }^{\top} \\
\cdots \\
0
\end{array}\right]=\left[Q_{\nu} \vdots Q_{\nu 1}\right]\left[\begin{array}{c}
Q_{\nu}^{\top} w \\
\hdashline \cdots \\
0
\end{array}\right]=Q_{\nu} Q_{\nu}^{\top} w+\overbrace{Q_{\nu^{1}} \cdot 0}^{=0} \\
& \text { basis for } \mathbb{R}^{m} \\
& =Q_{\nu} Q_{v}{ }^{\top} w
\end{aligned}
$$

that works nicely $\quad \mathrm{a}$

- Problem: given a basis $\{a,\}_{j=1}^{n}\left(=\left[\begin{array}{cc}a_{1} & a_{n}^{\prime} \\ 1 & 1\end{array}\right]=A\right)$, con we combine the basis vectors (col's of A) to produce an 1 norm. basis that spans $S=\operatorname{span}\left(\left\{a_{1}\right\}_{j=1}^{n}\right)=\operatorname{range}(A)$?

- Solution: set: $q_{1} \| a_{1}$
$a_{2} \quad \| \quad a_{2_{1 a_{1}}}=a_{2_{1 q_{1}}}$
$q_{3} \quad 11 \quad a_{3_{10,}, a_{2}}=a_{3_{1} q_{1}, q_{2}}$
write: $A^{(j)}=\left[\begin{array}{ccc}1 & 1 & 1 \\ a_{1} & 1 & a_{2} \\ 1 & a_{2} & a_{1} \\ & & \\ \hline\end{array}\right], Q^{(j)}=\left[\begin{array}{ccc}1 & 1 & 1 \\ a_{1} & 1 & 1 \\ 1 & 1 & a_{3} \\ 1 & & \\ 1\end{array}\right]$
$\left.q_{1} \quad \begin{array}{l}11 \\ a_{1} \\ q_{1,1}, \ldots, a_{j} \\ \end{array} a_{1 q_{1} \ldots q_{j}}\right]$ where $Q^{(j)} \perp$ norm and $\operatorname{range}\left(Q^{\prime j}\right)=\operatorname{range}\left(A^{(j)}\right)$
compute: $a_{1} Q^{(-1)}=P_{\perp Q^{(j-1)}} a_{j}=\left(I-P_{\mid Q^{(j-1)}}\right) a_{j}=\left(I-Q^{(-1)} Q^{\left.(-1)^{*}\right)} a_{j}\right.$

$$
=a_{j}-\left[\sum_{k=1}^{1-1} q_{k} q_{k}^{*}\right] a_{j}=a_{j}-\underbrace{-1}_{k=1} \underbrace{q_{k}^{*} a_{j}}_{* r_{k j}^{\prime \prime}}) q_{k}=a_{j}-\sum_{k=1}^{-1} r_{k j} q_{k}
$$

- Algorithm: Gram-Schmidt
- given $A \in \mathbb{C}^{m \times n}$
-initialize $Q^{(0)}=[]^{\omega \times 4}, R^{(0)}=[]^{n \times 4} \leftarrow$ empty, will fill as we g o
for $j=1: n$
(i) propose a candidate direction: $v=a_{j}$
(ii) orthogoratize: for $k=1: j-1$
(a) $r_{k_{j}}=q_{k}^{*} a_{j}$
(b) $v=v-r_{k j} q_{k}$
(iii) normalize:
(a) $r_{\mu}=\|v\|$
(b) $q_{j}=\frac{v}{r_{j}}$
(iv) store:

$$
Q^{(J)}=\left[Q^{(-1)}, q_{j}\right], \quad R^{(J)}=\left[\begin{array}{c:c}
R_{j-1}^{(1)} & \left.r_{2}\right) \\
\hdashline \cdots & 0 \\
\hdashline, 1,
\end{array}\right]
$$

- Algorithm: Gram-Schmidt
given $A \in \mathbb{C}^{m \times n}$
- initialize $Q^{(0)}=[]^{m \times 4}, R^{(0)}=[]^{n \times 4} \leftarrow$ empty, will fill as we $g o$
for $j=1: n$
(i) propose a candidate direction: $v=a_{J}$
(ii) orthogoalize: for $k=1: j-1$
(a) $r_{k j}=q_{k}^{*} a_{j} \longleftarrow$ equals $q_{k}^{*} v$
(b) $v=v-r_{k j} q_{k}$
alternate algorithms: $r_{k_{j}}=q_{k}{ }^{*} v$
(iii) normalize:
(a) $r_{\mu د}=\|v\| \longleftarrow$ equals $\left\|a_{k_{1} Q^{(k-1)}}\right\| \quad$ implies: $a_{\left.\perp Q_{j}^{\prime}-1\right)}=a-a_{\left.\| Q^{\prime}-1\right)}=a-\sum_{k=1}^{j-1} r_{k_{j}} q_{k}$
(b) $q_{j}=\frac{v}{r_{j J}}$
(iv) store:

$$
Q^{(j)}=\left[Q^{(J 1)}, q_{j}\right], \quad R^{(J)}=\left[\begin{array}{c:c}
R^{(J-1)} & f_{2,}^{\prime} \\
\hdashline \cdots & i_{j}
\end{array}\right]
$$

computes:

$$
\left[\begin{array}{l}
\text { so: } a_{j}=a_{1-a^{\prime-1)}}+\sum_{k=1}^{-1} r_{k j} q_{k} \\
\text { so: } a_{j_{1-a^{(J-1)}}}=v=r_{j J} q_{j}
\end{array}\right\} \begin{aligned}
& a_{j}=r_{j J} q_{j}+\sum_{k=1}^{J-1} r_{k j} q_{k}
\end{aligned}
$$

$$
a_{j}=\sum_{k=1} a_{k} r_{k j}
$$

- implies a decomposition of A...
R upper triable, a xn
- $Q R$ decomposition: given $A \in \mathbb{C}^{m \times n}$, linearly independent col's (rank $(A)=n \leq m$) then $\exists Q$ and R st.
$A=Q R \quad$ where $Q \in \mathbb{C}^{m \times n}$ has orthonormal col's \uparrow and $R \in \mathbb{C}^{n \times n}$ is upper triangular.
"undo the
ortlog onoli nation"
- Very powerful idea: triangular or thogonalization only required inner products $\$$ lin. comb.
converts a set of n linnoorly $\mathbb{1}$ vectors "A" to a 1 , normalized vectors " Q " and, by stowing the inner products involved in R, we can express all vectors in A, say, a_{j} as a linear comb of the preceding $q^{\prime} s\left(a_{j}=\sum_{k \leq j} r_{k j} q_{k}\right)$
- Works in any vector spore equipped w/ an inner product!!

$$
\begin{aligned}
& a_{1 Q^{(J-1)}}=v_{1 Q^{(1-1)}}=P_{1 Q^{(J-1)}} v \\
& =\left(I-P_{11 a^{(5-1)}}\right) v=\left(I-Q^{(5-1)} Q^{5-1)^{*}}\right)_{v}
\end{aligned}
$$

- Ex: Grom-Schmidt for polynomials

$$
\begin{gathered}
P_{\Omega}^{(m)}=\{a \| \text { polynomials of degree } \leq m \text { on } \Omega=[a, b]\} \\
\text { given } p, q \in p_{\Omega}^{(m)},\langle p, q\rangle=\int_{x \in \Omega} \bar{p}(x) q(x) d x \\
\|p\|^{2}=\langle p, p\rangle
\end{gathered}
$$

then con run $G S$ to convert a set of $n \leq m$, lin. \Perp porlmomials

$$
\begin{aligned}
& A=\left\{0_{1}(x), a_{2}(x), o_{3}(x), \ldots o_{n}(x)\right\} \longrightarrow \quad Q=\left\{q_{1}(x), q_{2}(x), \ldots q_{a}(x)\right\} \quad \text { conditioning } K(Q)=1 \ldots \\
& \underbrace{\text { Ex: }\left\{1, x, x^{2}, \ldots x^{-}\right\}}_{\text {typically } \text { key ill-conditioned }} \\
& \left.\begin{array}{l}
\text { set. } q_{i}(x) \perp q_{j}(x) \quad \forall i \neq j \\
\left\|q_{i}\right\|=1 \quad \forall i
\end{array}\right\}
\end{aligned}
$$

and $a_{j}(x)=\sum_{k \in J} r_{k j} q_{k}(x)$ where $r_{k j}$ follow from the inmer-prod. computed via Grom-Schenidt.

- Problem: given a basis $\{a,\}_{j=1}^{n}\left(=\left[\begin{array}{cc}a_{1} & a_{n}^{\prime} \\ 1 & 1\end{array}\right]=A\right)$, con we combine the basis vectors (col's of A) to produce an 1 norm. basis that spans $S=\operatorname{span}\left(\left\{a_{1}\right\}_{j=1}^{n}\right)=\operatorname{range}(A)$?

- Solution: set: $q_{1} \| a_{1}$
$a_{2} \quad \| \quad a_{2_{1 a_{1}}}=a_{2_{1 q_{1}}}$
$q_{3} \quad 11 \quad a_{3_{10,}, a_{2}}=a_{3_{1} q_{1}, q_{2}}$
write: $A^{(j)}=\left[\begin{array}{ccc}1 & 1 & 1 \\ a_{1} & 1 & a_{2} \\ 1 & a_{2} & a_{1} \\ & & \\ \hline\end{array}\right], Q^{(j)}=\left[\begin{array}{ccc}1 & 1 & 1 \\ a_{1} & 1 & 1 \\ 1 & 1 & a_{3} \\ 1 & & \\ 1\end{array}\right]$
$\left.q_{1} \quad \begin{array}{l}11 \\ a_{1} \\ q_{1,1}, \ldots, a_{j} \\ \end{array} a_{1 q_{1} \ldots q_{j}}\right]$ where $Q^{(j)} \perp$ norm and $\operatorname{range}\left(Q^{\prime j}\right)=\operatorname{range}\left(A^{(j)}\right)$
compute: $a_{1} Q^{(-1)}=P_{\perp Q^{(j-1)}} a_{j}=\left(I-P_{\mid Q^{(j-1)}}\right) a_{j}=\left(I-Q^{(-1)} Q^{\left.(-1)^{*}\right)} a_{j}\right.$

$$
=a_{j}-\left[\sum_{k=1}^{1-1} q_{k} q_{k}^{*}\right] a_{j}=a_{j}-\underbrace{-1}_{k=1} \underbrace{q_{k}^{*} a_{j}}_{* r_{k j}^{\prime \prime}}) q_{k}=a_{j}-\sum_{k=1}^{-1} r_{k j} q_{k}
$$

- Algorithm: Gram-Schmidt
- given $A \in \mathbb{C}^{m \times n}$
-initialize $Q^{(0)}=[]^{\omega \times 4}, R^{(0)}=[]^{n \times 4} \leftarrow$ empty, will fill as we g o
for $j=1: n$
(i) propose a candidate direction: $v=a_{j}$
(ii) orthogoratize: for $k=1: j-1$
(a) $r_{k_{j}}=q_{k}^{*} a_{j}$
(b) $v=v-r_{k j} q_{k}$
(iii) normalize:
(a) $r_{\mu}=\|v\|$
(b) $q_{j}=\frac{v}{r_{j}}$
(iv) store:

$$
Q^{(J)}=\left[Q^{(-1)}, q_{j}\right], \quad R^{(J)}=\left[\begin{array}{c:c}
R_{j-1}^{(1)} & \left.r_{2}\right) \\
\hdashline \cdots & 0 \\
\hdashline, 1,
\end{array}\right]
$$

- Algorithm: Gram-Schmidt
given $A \in \mathbb{C}^{m \times n}$
- initialize $Q^{(0)}=[]^{m \times 4}, R^{(0)}=[]^{n \times 4} \leftarrow$ empty, will fill as we $g o$
for $j=1: n$
(i) propose a candidate direction: $v=a_{J}$
(ii) orthogoalize: for $k=1: j-1$
(a) $r_{k j}=q_{k}^{*} a_{j} \longleftarrow$ equals $q_{k}^{*} v$
(b) $v=v-r_{k j} q_{k}$
alternate algorithms: $r_{k_{j}}=q_{k}{ }^{*} v$
(iii) normalize:
(a) $r_{\mu د}=\|v\| \longleftarrow$ equals $\left\|a_{k_{1} Q^{(k-1)}}\right\| \quad$ implies: $a_{\left.\perp Q_{j}^{\prime}-1\right)}=a-a_{\left.\| Q^{\prime}-1\right)}=a-\sum_{k=1}^{j-1} r_{k_{j}} q_{k}$
(b) $q_{j}=\frac{v}{r_{j J}}$
(iv) store:

$$
Q^{(j)}=\left[Q^{(J 1)}, q_{j}\right], \quad R^{(J)}=\left[\begin{array}{c:c}
R^{(J-1)} & f_{2,}^{\prime} \\
\hdashline \cdots & i_{j}
\end{array}\right]
$$

computes:

$$
\left[\begin{array}{l}
\text { so: } a_{j}=a_{1-a^{\prime-1)}}+\sum_{k=1}^{-1} r_{k j} q_{k} \\
\text { so: } a_{j_{1-a^{(J-1)}}}=v=r_{j J} q_{j}
\end{array}\right\} \begin{aligned}
& a_{j}=r_{j J} q_{j}+\sum_{k=1}^{J-1} r_{k j} q_{k}
\end{aligned}
$$

$$
a_{j}=\sum_{k=1} a_{k} r_{k j}
$$

- implies a decomposition of A...
R upper triable, a xn
- $Q R$ decomposition: given $A \in \mathbb{C}^{m \times n}$, linearly independent col's (rank $(A)=n \leq m$) then $\exists Q$ and R st.
$A=Q R \quad$ where $Q \in \mathbb{C}^{m \times n}$ has orthonormal col's \uparrow and $R \in \mathbb{C}^{n \times n}$ is upper triangular.
"undo the
ortlog onoli nation"
- Very powerful idea: triangular or thogonalization only required inner products $\$$ lin. comb.
converts a set of n linnoorly $\mathbb{1}$ vectors "A" to a 1 , normalized vectors " Q " and, by stowing the inner products involved in R, we can express all vectors in A, say, a_{j} as a linear comb of the preceding $q^{\prime} s\left(a_{j}=\sum_{k \leq j} r_{k j} q_{k}\right)$
- Works in any vector spore equipped w/ an inner product!!

$$
\begin{aligned}
& a_{1 Q^{(J-1)}}=v_{1 Q^{(1-1)}}=P_{1 Q^{(J-1)}} v \\
& =\left(I-P_{11 a^{(5-1)}}\right) v=\left(I-Q^{(5-1)} Q^{5-1)^{*}}\right)_{v}
\end{aligned}
$$

- Ex. Grom-Schmidt for polynomials
$P_{\Omega}^{(m)}=\{a l l$ polynomials of degree $\leq m$ on $\Omega=[a, b]\}$
given $p, q \in p_{\Omega}^{(-1)},\langle p, q\rangle=\int_{x \in \Omega} p(x) q(x) d x$

$$
\|p\|^{2}=\langle p, p\rangle
$$

then con run 65 to convert a set of $n \leq m$, lin. \mathbb{L} polynomials

$$
\begin{aligned}
& A=\left\{a_{1}(x), a_{2}(x), a_{3}(x), \ldots a_{n}(x)\right\} \longrightarrow Q=\left\{q_{1}(x), q_{2}(x), \ldots q_{n}(x)\right\} \quad \text { conditioning } K(Q)=1 \ldots \\
& \text { - } E_{x}:\left\{1, x, x^{2}, \ldots x^{n}\right\} \quad \text { set. } q_{i}(x) \perp q_{j}(x) \forall i \neq j \\
& \text { typically ven ill-conditioned } \\
& \left.\left\|q_{i}\right\|=1 \quad \forall i \quad\right]
\end{aligned}
$$

and $a_{j}(x)=\sum_{k \leq j} r_{k j} q_{k}(x)$ where $r_{k j}$ follow from the inner-prod. computed via Gram-Schmidt.

- modified 65: same as 65 , but, compute $r_{k j}=q_{k}^{*} a_{j}$ differently...
- Algorithm: mod. Gram-Schmidt
- given $A \in \mathbb{C}^{m \times n}$
- initialize $Q^{(0)}=[]^{m \times n}, R^{(0)}=[]^{n \times 4}$
for $j=1: n$
(i) propose a candidate direction: $V=a_{J}$
(ii) orthogonalize: for $k=1: j^{-1}$
(a) $r_{k j}=q_{k}^{*} v \longleftarrow$ compare to $65, r_{k j}=q_{k}^{*} a_{J}$
(b) $v=v-r_{k j} q_{k}$
(iii) normalize:
these are the same (theoretically)
since, at stage k
(a) $r_{\mu}=\|v\|$

$$
\text { (b) } q_{j}=\frac{v}{r_{j J}}
$$

(iv) store:

$$
Q^{(J)}=\left[Q^{(-1)}, q_{1}\right], R^{(J)}=\left[\begin{array}{c:c}
R_{1,1)}^{(J)} & r_{2} \\
\hdashline 0 & \vdots
\end{array}\right]
$$

allows us to reorder the loops, every time we compute a q_{k} remove it's component from all col's of A left to orthogonalize ($\mathrm{all} a_{\lrcorner>k}$)

- Algorithen: mod. Gram-Schmidt
- given $A \in \mathbb{C}^{\mu \times n}$
- intiolitizc $Q^{(0)}=[]^{1 "+1}, R^{(0)}=[]^{n-1}$

1. set $V=A$
2. For $j=1$ to n
$\left.\begin{array}{l}\text { (i) } r_{j J}=\left\|v_{j}\right\| \\ \text { (ii) } q=\frac{1}{} v_{j}\end{array}\right\}$ narmatize
(ii) $q_{J}=\frac{1}{j_{j}} V_{J}$
(iii) for $k=j+1$ to n
(a) $r_{\lrcorner k}=9_{J}^{*} v_{k}$
(b) $V_{k}=v_{k}-r_{J K} q_{J}$

Week 4-Orthogonalization \$ Fast Transforms. (inverse problems, linear systems, least square)

Logistics:

- Reading Project 1 posted
- HW 2 die on Thursday
- HW 3 to post Wednesday

Goals: 2 part lecture:
(i) House holder...
(ii) intro to fast transforms...

- Householder: like $6 S$, given a $A \in \mathbb{C}^{\substack{n \leq m \\ i}}$, convert $A \rightarrow Q, R$ st. $A=Q R$
where: Q is orthonormal $\longleftarrow m \times n, m \times m$
R is uspertriangular $\leftarrow \underbrace{n \times n}_{\hat{Q}, \hat{R}}, \underbrace{m \times n}_{\hat{Q}, \vec{R}}$
- GS: $A \xrightarrow{\text { col op }} \hat{Q} \hat{Q}$, triangular orthogonalization $\begin{aligned} & \text { reduction via a triangular matrix (recorded by } R \text {) }\end{aligned}$
- Householder.: $A \xrightarrow{\text { row or }} R$
reduction via an orthonormal, unitary matrix (Q^{*}, record Q)
- Take-aways:
I. derivation process

2. block matrices B block products
3. implicit representation of operations
4. mathematically equivalent methods can be numerically distinct

- Deriving Householder: reduce $A \rightarrow R$ via unitary operations (crow operations)

A

$A^{(1)}$

$A^{(6)}$

$$
A^{(0)} \stackrel{Q^{(1)}}{\longrightarrow} Q^{(1)} A^{(1)}=A^{(1)} \longmapsto Q^{(2)} \longmapsto Q^{(1)} A^{(1)}=A^{(1)} \longmapsto Q^{(1)} A^{(1)}=A^{(1)}=R
$$

recursion: $A^{(9)}=Q^{(5)} A^{(5-1)}, A^{(0)}=A, A^{(0)}=R$

$$
\begin{aligned}
& A^{(5)}=Q^{(1)} Q^{(5-1)} Q^{(5-2)} \ldots Q^{(2)} Q^{(1)} A^{(0)} \\
& A^{(1)}=\underbrace{\left[Q^{(1)} Q^{(n-1)} \ldots Q^{(2)} Q^{(1)}\right]}_{Q^{*}} A=R, \quad Q^{*} A=R \\
& A=Q R \\
& Q=Q^{(1)^{*}} Q^{(1)^{*}} \ldots Q^{(1)^{1)^{*}}} Q^{(1)^{*}} . \\
& \text { Q* expletly, mops } A \mapsto R \\
& Q \quad . . \quad R \mapsto A
\end{aligned}
$$

- goal: build the 1 projector $P_{\text {IA }}=\hat{Q} \hat{Q}^{*}$

$$
\text { applying } x_{v A}=P_{u A} x=\hat{Q}\left(\hat{Q}^{*} x\right)
$$

- Ex: : store the minimal information needed to apply the transform $T^{(s)}(x)=Q^{(1)} x$

$$
\begin{aligned}
\hat{O}^{*} & =Q^{(n)} Q^{(n-1)} \ldots Q^{(2)} Q^{(1)} x \\
& =T^{(n)}\left(T^{(n-1)}\left(\ldots T^{(1)}(x)\right)\right) \\
& =T^{(n)} \cdot T^{(n-1)} \ldots \circ T^{(2)} \cdot T^{(1)}(x) .
\end{aligned}
$$

perform recursively

$$
x^{(0)}=x, x^{(s)}=T^{(j)}\left(x^{(s-1)}\right) \longleftarrow \text { multiplication by }
$$

$$
Q^{*} \text { implicitly. }
$$

A

$A^{(1)}$

$A^{(a)}$

$A^{(3)}$

$A^{(1)}=R$

design: $Q^{(J)}$ only change rows $\mathrm{J} . . \mathrm{m}$ of input.

- block multiplication by matrices:

$$
\begin{aligned}
& M=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right], M^{\prime}=\left[\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right] \\
& M M^{\prime}=\left[\begin{array}{cc}
A A^{\prime}+B C^{\prime} & A B^{\prime}+B D^{\prime} \\
C A^{\prime}+O C^{\prime} & C B^{\prime}+D D^{\prime}
\end{array}\right]
\end{aligned}
$$

- check: $Q^{(j)}=\left[\begin{array}{c:c}I_{1-12-1} & 0 \\ \hdashline 0 & F^{(j)}\end{array}\right], A^{(1-1)}=\left[\begin{array}{c}U^{(-1)} \\ \hdashline 0\end{array} \begin{array}{c}\uparrow \\ j-1 \\ \vdots \\ \uparrow \\ L^{(1-1)}\end{array}\right]$
- build $F^{(s)}$ (reflectors)
at stage $F^{(j)}, L^{(j-1)} \leftarrow$ lower $m-(j-1)$ rows of $A^{(j-1)}$

$$
\downarrow \propto e_{1}=[1,0,0 \ldots 0]
$$

def: at stage J, x be the last $m-(j-1)$ entries of $j^{\text {th }}$ col. of $A^{(1-1)}$

$$
x=A_{(,: m), 1}^{(1-1)}
$$

toke rows s to m of $\lrcorner^{\text {th }}$ col. of $A^{\{-1\}}$
-general problem: find a unitary matrix $F^{(1)} \in \mathbb{C}^{-(1-1) \times(-(5-1)}$
st.

$$
\begin{aligned}
F^{(1)} x & =z\|x\|\left[\begin{array}{l}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]=z\|x\| e_{1} \\
& {\left[\begin{array}{l}
\text { require } \\
z \in \mathbb{C},|z|=1
\end{array}\right.}
\end{aligned}
$$

- For simplicity... pick $z=1$ (for now)

reflection across H sends $x \rightarrow\|x\| c$,

$$
\text { gang "half war", } x_{u H}=P_{u H} x=\left(I-P_{H H}\right) x=\left(I-P_{H N}\right) x=\left(I-\frac{v v^{*}}{\| v u^{*}}\right) x=x-\underbrace{\frac{1}{u_{w u^{2}}}\left(v^{*} x\right) v}_{x_{u v}=x_{L H}}
$$

reflecting: $x-2 x_{1+1}=x-2 x_{n v}=\underbrace{\frac{2}{\| v v^{2}}\left(v^{*} x\right) v=F^{(1)} x}_{\underbrace{}_{\text {pecten }} F^{(j)} x \text { implicitly }} \longleftrightarrow F^{(s)}=I-2 \frac{v v^{*}}{v^{*} v}$

- check: is $F^{\prime \prime}$ unitary: let $v=\frac{1}{\|v\| v}$

0) $F^{(1)^{*}}=\left(I-2 v v^{*}\right)^{*}=I^{*}-2 v^{* *} v^{*}=I-2 v v^{*}=F^{(\rho)} \quad$ (Hermitian: thus $Q^{(3)}=Q^{(1)}$)
1) $F^{(\rho)}$ is square $\left(m-(\rho-1) \times\left(m-c_{j}-1\right)\right) \quad l$
2) $F^{\prime\left(s^{*} F^{\prime} s\right)}=\underbrace{\left(I-2 v v^{*}\right.}_{F^{*}=F})\left(I-2 v v^{*}\right)=I-4 v v^{*}+4 \underset{=\|v\|^{2}=1}{v v^{*} v v^{*}}=I-4 v v^{*}+4 v v^{*}=I$

- Ok, so, we are almost there...

$$
|z|=1
$$

- how to reflect x to $z\|x\| e_{1}$?
use the same formula:

$$
\begin{aligned}
& v=z\|x\| e_{1}-x \\
& F^{\prime \prime}\left(x=x-2 \frac{1}{\|v\|^{2}}\left(v^{*} x\right) v, f^{\prime}\right)=I-2 \frac{v v^{*}}{\|v\|^{2}}
\end{aligned}
$$

- what Z is best?
- we want to perform the steps:

1. $v=z\|x\| e_{1}-x \quad \longrightarrow$ unstable if v small (cancellation errors)
2. $v=\frac{v}{\|v\|} \quad \longrightarrow$ unstable if v small (divide b, small 4)
3. $\left.F^{\prime \prime}\right)_{x}=x-2\left(v^{*}\right) v$
so, choose z to maximize $\|v\| \mapsto z=-\operatorname{sign}(x)$.

- then: $v=-\left(\operatorname{sign}\left(x_{1}\right)\|x\| e_{1}+x\right)$
equivalently ($F^{\prime s)}$ always uses $v^{*} v$ or $v v^{*}$)

$$
V=\operatorname{sign}\left(x_{1}\right)\|x\| e_{1}+x
$$

- So, Householder explicitly:
- implicitly: (neva build Q or $Q^{(s)}$ or $F^{(s)}$)
I. set $A^{(0)}=A$

2. For $j=1$ to .n
(i) $x=A_{(j:-1), 1}^{(j-1)}$
(ii) $v^{(1)}=\operatorname{sign}\left(x_{1}\right)\|\times\| c_{1}+x$
(iii) $v^{(\jmath)}=\frac{1}{\left\|v^{(1)}\right\|} v^{(\rho)}$
(iv) $F^{(j)}=I-2$ vs) $\left.v^{(s)}\right)^{k}$
(v) $Q^{(j)}=\left[\begin{array}{cc}I_{J-(2)-1} & 0 \\ 0 & f^{(s)}\end{array}\right]$
(vi) $A^{(1)}=Q^{(1)} A^{(-1)}$
3. set $R=A^{(n)}, Q^{*}=Q^{(n)} Q^{(n-1)} \ldots Q^{(2)} Q^{(1)}$.
4. set $A^{(0)}=A$
5. for $j=1$ to n
(i) $x=A_{(j: \sim 1}^{(j-1)}$

$$
\begin{aligned}
& \text { (ii) } v^{(1)}=\operatorname{sign}\left(x_{1}\right)\|x\| c_{1}+x \\
& \text { (iii) } v^{(1)}=\frac{1}{\|v(s)\|} v^{(1)}
\end{aligned}
$$

- House holder vs. G5: $A \in \mathbb{C}^{m a n}$

$$
\begin{aligned}
& \text { C Cost: 1. implicit Householder is faster }\left(\theta\left(2 m n^{2}-2 / 3^{n^{3}}\right) \text { vs. } \theta\left(2 m n^{2}\right)\right) \\
& \text { 2. store } Q \text { efficiently vil }\{v(s)\}_{\jmath=1}^{n} \\
& \text { (is applying } Q \text { implicitly cheaper than applying } Q \text { explicitly?) } \\
& \text { Stability: Honscholder is provably backward stable } \\
& \text { more stable than GS or maS } \\
& \underset{(c s, m(S>H)}{\text { cons }}\left\{\begin{array}{l}
G S \$ \text { maS build } Q \text { explicitly, in on online" } \\
\text { fostion (each new col ar } \rightarrow \text { o }) \\
\text { Householder builds is using all of } A, \text { consol perform sequentially. }
\end{array}\right.
\end{aligned}
$$

Thursday - 4/13/2023

- Logistics:
- Goals: fast transforms.
- MW 2 due tonight
- Ex: building a fast wavelet transform
- HL 3
- the Fast Fourier Transform !!!
montpols
- Fast Transforms. linear transform $T(x)=A x, A \in \mathbb{C}^{m \times n}$ has cost $\sigma(m n)$
- Can be prohibitively expensive: image processing - 1080 p image has $\approx 2 \times 10^{6}$ pixels, 3 colas values $\mapsto n$ on order $10^{7}, \sigma\left(n^{2}\right) \approx 10^{14}$ calculations
audio - $44.1 \mathrm{KHz}, 10^{4}$ values pes second, 3 ain $\rightarrow 10^{6}$ values $\sigma\left(n^{2}\right)=10^{12}$ calculations
video - 24 fares a second, 2 hr movie $=120 \min \times 60 \leq \times 24 \approx 10^{4}$ 10^{10} values !! $\sigma\left(n^{2}\right) \approx 10^{20}$
- yet, we perform signal processing on a massive scale all the lime... how?
-idea: use transforms $T(x)$ whose cost is almost $\theta(n) \ldots$

Past transforms: $T(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ cost $<\theta\left(n^{2}\right)$
(usually, $\theta\left(n \log _{2}(n)\right)$

$\left[\right.$ way foster, takes $\frac{\log _{2}(n)}{n}$ less time
-how?

- use 1 matrices so inversion is multiplication by A^{\top}, cut cost $\theta\left(n^{3}\right) \rightarrow$ cost of $A^{\top} x$
and... stable
- exploit symmetries of the transform that make certain inner products
reccuisis block operations redundant.
-En: $a_{1}=\left[\begin{array}{l}a \\ b \\ c \\ d \\ c\end{array}\right], ~ a_{2}=\left[\begin{array}{c}a \\ b \\ -c \\ -d \\ -c\end{array}\right]$, want $A^{\top} x$, naively: $A^{\top} x=2$ inner prod, 9 operations coach $\rightarrow 18$ orvotions

- Challenge: design a basis $\{a,\}_{j=1}^{n}$ for \mathbb{R}^{n}
st.
useful $\longrightarrow 1$. the transform $T(y)=A_{y}$ is meaning f_{11}
stable/invatible $\longrightarrow 2$. the a's are \perp
cheap $\longrightarrow 3$. the a's are sufficicitly symmetric/repetitive...
- Ex. a wavelet transform
x is a signal (soy audio)
$x_{j}=$ amplitude at time $t_{j}=\rho \Delta t$
- represent signal as sum of wave (lets) $\left.\begin{array}{l}\text { w/ varying frequency } \$ \text { dwation: }\end{array}\right\} \begin{aligned} & \text { extinct intensity of } \\ & \text { different pitches at } \\ & \text { each time }\end{aligned}$ w/ varying frequency $\$$ duration: each time

- then A is a "Vandermonde" matrix for functions $\left\{a_{j}(t) \xi_{j=1}^{n}\right.$ at samples $\{t,\}_{j=1}^{n}$
- solve $A_{y}=x$ to write

$$
x(t) \approx \sum_{j=1}^{n} y_{j} a_{j}(t)
$$

τ cocfficients/representation in "frequency" space

- a particularly easy transform.
- let $a_{1}(t)$ be a square wave (one period), T

- $\left.\begin{array}{rl}a_{2}(t) & =a_{1}(2 t) \\ a_{3}(t) & \text { (scale down) } \\ a_{1}(z(t-T)) & \text { (translate) }\end{array}\right] 2$ copies, half the sic

$$
\left.\begin{array}{l}
a_{4}(t)=a_{2}(2 t) \\
a_{5}(t)=a_{2}(2(t-7)) \\
a_{6}(t)=a_{2}(2(t-2 T)) \\
a_{7}(t)=a_{2}(2(t-3 T))
\end{array}\right] 4 \text { copies, 1/4 the size }
$$

- these are wavelets. Call a_{j}, w_{J}, A, W - represent $x(t)$ as linear comb. of square waves of different frequencies $\$$ off sets

-then: $W^{(m)}=$ $\left[\begin{array}{l:l:l:lll}1 & 1 & 1 & & 1 \\ 1 & 1 & 1 & & -1 & \\ 1 & 1 & -1 & & 1 & \\ 1 & 1 & -1 & & -1 & \\ 1 & -1 & & 1 & & 1 \\ 1 & -1 & & 1 & & -1 \\ 1 & & 1 & -1 & - & \\ 1 & -1 & & & & 1 \\ 1 & -1 & & -1 & & \\ 1 & & & & & \end{array}\right]$
- is $W^{(m)}$ orthogonal? (yes)
- is $W^{(m)}$ cheap to apply?

$$
W^{(n)^{\top}} \ldots \text { ? }
$$

 subdivide and compress again

- properties:

1. 1 : the col's of $W^{(m)}$ are mutually \perp
2. W is square so W is invertible and $W^{-1} \propto W^{\top}$ up to a diagonal scaling normalize (owns)
3. normalization: col 0 has length $\sqrt{\sum_{k=1}^{z^{m}} 1^{2}}=\sqrt{2^{m}}$

$$
=2^{m / 2}
$$

col 1 has length $=2^{m / 2}$
col's $\mathrm{J}=2 \ldots \mathrm{~m}$ have $\left(2^{-}\right) / 2^{1-1}$ noneciors

$$
\text { length }=2^{(m-(\rho)-1)) / 2}
$$

so $\left.D[1 / 2)^{m / 2},(1 / 2)^{m / 2},(1 / 2)^{-1 / 2},(1 / 2)^{-1 / 2}, \ldots,(1 / 2)^{1 / 2}\right]$ normalizes
W...

$$
W^{(-)} D^{(-)} \text {is unitary }
$$

$$
\text { .so } W^{(1-1)^{-1}}=\frac{\left.\operatorname{dig}\left((1 / 2)^{m},(1 / 2)^{-1},(1 / 2)^{n-1},\left({ }^{(12}\right)\right)^{n-1}, \ldots\right)}{4 \text { nonzero entice in each row }} w^{(1-1)^{\top}}=D W^{(m)^{\top}}
$$

- notice: y_{j} is z a difference
- so, given:

$$
\begin{aligned}
x(t) \approx \sum_{j=0}^{n=2^{m}} y_{j} w_{j}(t) \Rightarrow W_{y} & =x \\
y & =D W^{(\omega)^{\top}} x
\end{aligned}
$$

- Challenge: compute $W^{(m)^{\top}} \times$ foster than $\theta\left(n^{2}\right)=\theta\left(2^{2 m}\right)$

- notice: $w_{0}{ }^{\top} x$ looks a lot like $w_{1}{ }^{\top}$ a...

Cost: (multiplications) (additions) I (total)
try: compute: $y_{0}=w_{0}^{\top} x=\sum_{j=0}^{n-1} x_{j}=\sum_{j=0}^{2=1} x_{j}$

$$
n=2^{m}
$$

$$
n-1=2^{m}-1 \approx 2 n=2^{m+1}
$$

then, compute: $y_{0}^{\left(k_{2}\right)}=\sum_{j=0}^{n_{2}-1} x_{j}=\sum_{j=0}^{2^{n-1}} x_{j}$

$$
\begin{aligned}
y_{1} & =\sum_{j=0}^{n / 2-1} x_{j}-\sum_{j=01 / 2}^{1} x_{j} \\
& =y_{0}^{(1 / 2)}-\left(y_{0} \cdot y_{0}^{(0)}\right) \\
& =2 y_{0}^{(1 / 2)}-y_{0}
\end{aligned}
$$

computes $y_{0} \& Y_{1}$ in $Z\left(n+\frac{1}{2} n\right)$ steps instead of $\quad Z(n+n)$ steps

- to get to $n \log _{2}(n)$ complexity we recuse: halved the cost for y_{1}

$$
\cdot y_{2} \text { is to } y_{1}^{(1 / 2)} \text { as } y_{1} \text { is to } y_{0}^{(1 / 2)}
$$

- if we compute only the inner products
w/ the grey shaded entries $\left(W_{i j}^{(n)}=1\right)$, then we can compute $W^{(\omega)^{\top}} \times$...

$$
\text { total cost }=\frac{2 \cdot\left(\begin{array}{l}
\text { (oreo shaded } g r e y) \\
n+(\# \text { blocks }) \cdot n / 2
\end{array}+(2 \cdot \# \text { rows }-2) ~\right.}{n+2}
$$

\# blocks $=m=\log _{2}(n)$

$$
\begin{aligned}
\text { total cost } & =2\left(n+\log _{2}(n) n / 2\right)+2 n-2 \\
& =\log _{2}(n) n+\theta(n)
\end{aligned}
$$

- Row combination I $L_{\text {many small colatalions }}$

$$
\text { so cost }=\sigma\left(n \log _{2}(n)\right) \text { ! }
$$

- this is a "fast" transform:

$$
\begin{aligned}
\text { cost of } W^{(n)^{-1}} \text { directly } & =\theta\left(n^{3}\right)=\sigma\left(2^{3 n}\right) \\
W^{(n)^{T}} \text { directly } & =\sigma\left(n^{2}\right)=\sigma\left(2^{2 n}\right) \\
W^{(n)^{\top}} \text { recwsively } & =\theta\left(n \log _{2}(n)\right)=\theta\left(m 2^{m}\right)
\end{aligned}
$$

- Ex: $m=20, \quad n=10^{7}$

$$
=10^{21} \leftarrow(a h!)
$$

$$
=10^{14} \leftarrow(\text { ugh. .) }) \quad \perp\left(1 0 ^ { 7 } \text { surety } \left(10^{6}\right.\right. \text { times foster }
$$

$$
=10^{8} \tau_{\text {hardy, more }}{ }^{\text {spall }} 0^{6} \text { times foster again }
$$

outputs ...
asymptotically $\log _{2}(n)$
calculations per ont pat

- Other fast transforms, matrix multiplication methods use essentially the same trick, recursively block computation to exploit symmetries
- Ex:

1. the fast Hadamord-Walsh transform (FHWT) $\} \sigma\left(n \log _{2}(n)\right)$ instead of $\overbrace{\sigma\left(n^{2}\right)}^{\text {apply }}$ or $\overbrace{\sigma\left(n^{3}\right)}^{\text {inert }}$
2. the fast Fourier transform (FFT)
3. the Strassen algorithms $\left(O\left(n^{2807 \ldots}\right)\right.$ for $A B$ instead of $\theta\left(n^{3}\right)$) $\tau_{\log _{2}(7) \text {, not } n^{2} \log (n) \text { since no symuretios, }}$ a spumed.

- The FFT: performs a fast, discrete Fourier Transform...
- input: $x=\left[x_{0}, x_{1}, \ldots x_{n-1}\right]$ consider samples of a periodic signal:

$$
\begin{aligned}
& x_{0}=x(0), x_{1}=x(\Delta t), x_{2}=(2 \Delta t), \ldots x_{n-1}=x((n-1) \Delta t), x_{n}=x(n \Delta t) \overbrace{n}^{\top}=x(0)=x_{0} .
\end{aligned}
$$

repeats every n samples

- assume $n=2^{m}$, otherwise, zero-pad

- goal: interpolate on basis of T periodic harmonic functions of increasing frequency

$$
\text { .e.g. : } \underbrace{\sin \left(2 \pi k \frac{t}{T}\right), \cos \left(2 \pi k \frac{t}{T}\right)}_{e^{: k 2 \pi t / T}=\sin (\ldots)+i \cos (\ldots)}, \begin{aligned}
& \text { for } k \in[0,1,2, \ldots n-1]
\end{aligned}
$$

- in terms of the samples:

$$
\begin{aligned}
& f_{k}(t)=e^{i k 2 \pi t / \tau} \\
& f_{k}\left(t_{j}\right)=F_{\Delta k}=e^{i k 2 \pi^{t} / \tau}=e^{i k 2 \pi \frac{j \Delta t}{n \Delta t}}=\underbrace{\left(e^{i \frac{2 \pi}{n}}\right)^{j k}}_{\omega^{\prime}}=\omega^{\Delta k}]
\end{aligned}
$$

$$
\text { so } F^{(n)}=\left.\left[\begin{array}{ccc}
1 & 1 & 1 \\
f_{i}^{(t)} & f(t) & f_{n}(t) \\
1 & 1 & 1
\end{array}\right]\right|_{i_{n=1}^{b}} ^{\frac{i n c r e s i n g}{} f_{i}}
$$

- then, Vandermonde matrix of $\left[\omega^{0}, \omega_{1}^{1}, \omega^{2}, \ldots \omega^{n-1}\right]$ Fact: $F^{(n)}$ has \perp columns, (not normalized, length \sqrt{n}) invert via $F^{(n) *}=\bar{F}^{(n)}$
- What is ω ?
- init for complex exponentiation: given $z=|z| e^{i \theta}, z^{k}=|z|^{k} e^{i k \theta}=|z|^{k}(\cos (k \theta)+i \sin (k \theta))$
- raising ω^{k} rotates in complex plane...
- $\omega=e^{i \frac{2 \pi}{n}}=$ the $1^{\text {st }}$ of the n complex roots
of $1 .$. .

Compare: $\omega_{(n)}^{\ell}$ for $n=4,8$

$n=8$
notice: $\omega_{(2 n)}^{2 l}=\omega_{n}^{l} \quad\left(E_{x}: \omega_{(8)}^{2}=\omega_{(4)}^{1}=i, \omega_{(8)}^{4}=\omega_{(4)}^{2}=-1\right.$, etc...)
thus: powers of w repeat, $F_{(n)}$ and $F_{(z n)}$ share entries... redundancy in a recwsive block/multiscale fashion

- Ex: $\quad n=4, \quad \omega=i$

$$
F_{(4)}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & i^{2} & i^{3} \\
1 & i^{2} & i^{4} & i^{6} \\
1 \\
1 & i^{3} & i^{6} & i^{9}
\end{array}\right]=\left[\begin{array}{cccc}
2 \\
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

Swap even $\$$ odd columns to match entries (use $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ \hdashline & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$)

the blocks are related to $F_{(2)}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right], A=F_{(2)}^{(w=-1)}, B=\left[\begin{array}{l}1 \\ \end{array}\right] F_{(z)}=D_{(2)} F_{(z)}$

$$
\text { so }=\left[\begin{array}{cc}
F_{(z)} & D_{(z)} F_{(2)} \\
F_{(z)} & -D_{(z)} F_{(z)}
\end{array}\right]=\left[\begin{array}{ll}
I & D_{(z)} \\
I & -D_{(2)}
\end{array}\right]\left[\begin{array}{ll}
F_{(z)} & F_{(z)} \\
F_{(z)} & F_{(z)}
\end{array}\right]
$$

so:

- Generally $\dot{D} F_{(n)}=S_{(1 / 2)}\left(\left(\| \|^{\top}\right) \otimes F_{(1 / 2)}\right) P_{\text {ane -odd }}$
- Consequence: we con perform $\bar{F}_{(n)} \times$ using:

1. permute even B odd, use $P_{(n / 2)} \leftarrow$ splits $x=\overbrace{\left[p_{0}, x_{1}, x_{2}, x_{s}, \cdots x_{n-1}\right]}$ into 2 sjonals
2. apply $\bar{F}_{(n / 2)}$ to $x_{\text {even, }} x_{0, d s}$
3. apply a sparse change of signs $S_{\text {(ane) }}$ and combine

- costs: I. chop, $\theta(n)$ swaps - linear time

2. Z (cost of $\left.F_{\left(n_{2}\right)}\right) \longleftarrow$ dominates
3. chop, $O\left(2_{n}\right)$ nonercoo attics \leftarrow linear time

- now we can recuse... if $n=2^{m}$ then, every time we need to use $\vec{F}_{(\ell)}$ use $\bar{F}_{(l / 2)}$ twice...

$$
\begin{aligned}
& 1 \times \bar{F}_{\left(2^{m}\right)} \quad=2 \times \bar{F}_{\left(2^{m-1}\right)} \quad=4 \times \bar{F}_{\left(2^{m-2}\right)}=8 \bar{F}_{\left(2^{m-3}\right)}
\end{aligned}
$$

$L_{\text {smaller completion }}$ * of limes \rightarrow の

- so: applying $\bar{F}_{\left(z^{m}\right)}=\operatorname{appl} l_{i n g} \bar{F}_{\left(z^{m-l}\right)} z^{l}$ times $=\operatorname{applying} \bar{F}_{(1)} z^{m}=n$ times \leftarrow many small computations

$$
\times \ell \text { conversions } \quad \times m=\log _{z}(n) \text { conversions! } \leftarrow \text { fer combinations }
$$

1. virtually all signal processing - demising, convolution, filling
2. data compression transfer CT scone: ing...
3. spectral analysis - think spectroscopy, ceroloaet dekedore, seismology
4. soln methods for PDE's - hoot qu, diffusion, was, SDE's

Week 5 - Inverse Problems (direct methods)

- Tnesdyy - 04/18/2023 - Linear Systems
- Logistics:
- finish reading up to part IV
- HW 3 assigned Tuesdry, due next Tuesday (April $25^{\text {the }}$)
- Progect 2 past, due May $10^{\text {th }}$
- Goals:
- introduction to inverse problems
- Gaussion Elimination

LU decomposition

- stablity \$ pivoting
- Ex. imoging, interpolation, steady
- Inverse Problems: given a transform ("forward model"), $T: X \rightarrow Y$] and an output $y \in Y$, find x s. 1

$$
T(x)=y .
$$ stak problems for dyrnamial systems, oplinizer updates. etc.

-if X, Y finite dimensional, T lineos, then solving

- linear system: given $A \in \mathbb{C}^{m \times n}, y \in \mathbb{C}^{m}$ find $x \in \mathbb{C}^{n}$ s.t.

$$
A_{x}=y
$$

- geneal soln: if T is ingectivelone- to one then $T(x)=T\left(x^{\prime}\right)$ iff $x=x^{\prime}$

$$
\text { let } T_{f}^{+}: \operatorname{range}\left\{\sum_{\text {peado inesece }} T(x) \xi \longrightarrow x \text { s.l. } T^{\dagger}(y)=x \text { f } T(x)=y\right.
$$

$$
\ldots A^{t} \in \mathbb{C}^{n \times m} \text { s.I. } A_{y=x}^{t} \text { if } A_{x}=y_{y}^{y \in \text { range }(A)} \Rightarrow A^{\dagger} A_{x}=x
$$

$$
A^{\prime} A=I_{n \times n} \leftarrow n<m
$$

if T is bijective (ingetive sonjective) then range $\{T(x)\}=Y$

$$
\text { so } T^{+}=T^{-1}, T^{-1}(y)=x \text { st } T(x)=y \quad y \in Y
$$

‥ A square, full rank $\Rightarrow A^{+}=A^{-1}, A_{y}^{-1}=x$ if $A x=y \Rightarrow A^{-1} A=I_{\text {anen }}=A A^{-1}$

- Numerically: never compurte A^{-1}. Why? usually only need x for a couple y's, not ally (cheopes) $\left\|A^{-1}\right\| \gg\|A\|$ for many examples, lose stracture in A (spasity), and, only need A^{-1} implicity to compunte $X . .$. use reduction methods instead.
- Linear Systems: given $A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m \times 1}$ find $x \in \mathbb{C}^{n \times 1}$ s.1. $A x=b$

given $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right], b=\left[\begin{array}{l}3 \\ 6\end{array}\right]$ find x st. $A x=b$.

1. Row Reduction:
combine eau's (rows) to eliminate variables combine eqn's (rows) to eliminate variables
ie. to set entries to zero upper triangular
augmented matrix

\uparrow
cancel
out
2. Back-Substitution: now, solve from the bottom up

$$
\left.\left[\begin{array}{ccc:c}
4 & 2 & 2 & 10 \\
0 & -4 & -1 & -6 \\
0 & 0 & 1 & 2
\end{array}\right] \begin{array}{l}
\text { (ii) } \\
\text { (ii) }
\end{array}\right)
$$

(iii) $0 x_{1}+0 x_{2}+1 x_{3}=2 \mapsto x_{3}=2$
(ii) $0 x_{1}-4 x_{2}-1 x_{3}=-6 \mapsto-4 x_{2}-2=-6 \mapsto-4 x_{2}=-4 \mapsto x_{2}=1$
(i) $4 x_{1}+2 x_{2}+2 x_{3}=10 \longmapsto 4 x_{1}+2+4=10 \longmapsto 4 x_{1}+6=10$ J

- So, $x=[1,1,2]$

$$
4 x_{1}=4 \longmapsto x_{1}=1
$$

this method is Gaussian Elimination. general algorithm for solving linear systems

1. row-reduce: use rows to cancel columns until upper triangular

2. back-sub: solve backwards bottom to top.

- Algorithm: input $A \in \mathbb{C}^{n \times n}, b \in \mathbb{C}^{n}$ 1. initialize $U=A, L=I_{\text {ana }}$

2. For $j=1$ to n
(i) for $:=j+1$ to n
(a.) $l_{i j}=u_{i j} / u_{j J}$
(b.) $u_{i_{j,: n}}=u_{i, j: n}-l_{i, j, j: n}$

(c.) $b_{i}=b_{i}-l_{i j} b_{j}$

3. initialize $x=[]_{n \times 1}$
4. For $j=n$ bo 1
(c) $x_{j}=\left(b_{j}-\sum_{i>j} u_{j i} x_{i}\right) / u_{j J}$

- The LU decomposition:
- Def: given $A \in \mathbb{C}^{n \times n}$ invertible, \mathcal{I} a parmutation matix $P \in \mathbb{R}^{n \times n}$.
s.t.
$P A=L U$ wher:
reooder the \quad 1. $L \in \mathbb{C}^{n \times n}$ Lower triangular $\left(w / \ell_{J j}=1,\left|\ell_{. j}\right| \leq 1 \quad \forall i>j\right)$
rows

2. $U \in \mathbb{C}^{n \times n}$ upper triongulas

- reduction: Gaussian elimination reduces $A \longrightarrow U$
via

Iredection: i 's are the mantiplecs ased
$L^{-1} \Longleftrightarrow L$ by negting eatries bebow the digoool. -build L implectly doning redection
- advantage of $L U$: given $A \in \mathbb{C}^{n \times n}, L, U$ known
solve $A_{x=b} \stackrel{L\left(U_{x}\right)=b}{\rightleftarrows}$ 1. solve $L_{y}=b$ via forward sub

2. solve $U_{x}=y$ via bock sub

- much faster if L, V or known, or solving $A_{x}=b$ for a sequence of b^{\prime}...
- Computational Cost: how expensive is Gaussian Elimination $(A \rightarrow L U)$?

Back - Sub?
$\int^{\text {same as }} Q R \ldots$
-Row-reduction: given $A \quad n \times n$, the cost of red. is $\propto n^{3}\left(\theta\left(n^{3}\right)\right)$
expensive/slow

- Why? 1. $n-1$ stages (from 1 to $n-1$)

2. operate on $n-j-1$ rows wd nj col's, only need for $n-j-1$ col's (cost: 1 multiplier pes row

$$
\begin{aligned}
& \text { row } o p=1 \theta+1 \theta \text { per } \\
& \text { entry }=(n-j-1)(1+2(n-j-1)) \\
& 4 \text { rows } \\
& \left.=2(n-j-1)^{2}+\theta(n-j-1)\right) \\
& \text { cost }=\sum_{j=1}^{n-1} 2((n-1)-j)^{2}=\frac{2}{3} n^{3}+\theta\left(n^{2}\right) \sim \frac{2}{3} n^{3} \\
& \text { to leading order }
\end{aligned}
$$

- Back-Snb: cost $\infty n^{2}\left(\theta\left(n^{2}\right)\right)$

$$
\text { (n stages, at jot stage do } \sim 2(j-1)+1
$$

operations,

$$
\operatorname{cost} \sim \sum_{j=1}^{n} 2(\rho-1)=2\left(\frac{(n+1) n}{2}+n\right)
$$

$$
\left.\tilde{z}^{n^{2}}+\theta(n)\right)
$$

so, cost $\sim n^{2}$
'moral: row-reduction is much more expensive then back-sub.

\uparrow		\uparrow
$\sigma\left(n^{3}\right)$	vs.	$\sigma\left(n^{2}\right)$

- general trend:
- reduction / factorization is expensive: $\sigma\left(n^{3}\right) \sqrt{\text { some cost as multiplication! }}$
- using reduced/foctorized matrices is cheap: $\theta\left(n^{2}\right)$ or foster
$\ldots n^{3}$ is cost to reduce, n^{2} is cost to use...
- given $A=F_{l} F_{l, i} F_{1}$ for some factors
if we want
don't multiply factor, apply in sequence

$$
\left.A_{x}=F_{l}\left(F_{l-1}\left(\ldots F_{2}\left(F_{1} x\right)\right) \ldots\right)\right)
$$

walk w/ decompositions implicitly when passible

- Stability \& Pivoting: is Gaussian elimination $A \rightarrow L U$ stable?
no!, not w/out pivoting (lecture 21)
- Suppose that, at stage J:
the pivot $U_{j j}^{(j-1)}$ is very small

Cor $u_{j j}^{(j-1)} \ll u_{i j}^{(j-1)}$ for i>j)
then multiplier $l_{i j}=u_{i j}^{(j-1)} / u_{j j}^{(-1)}$ requires division by a small number!
unstable (extreme case: $u_{j j}^{(j-1)}=0$, divide by 0 extra!)

- in principle there is no need to reduce in order...
 $a h!$ pivot $=0$
adds $\sigma\left(\left(n_{-j}\right)^{2}\right)$ search cost... too expensive
-idea: pivoting: at each stage, reorder cows $\$$ columns of $U^{(j-1)}$
to maximize the pivot
partial pivoting: only swap rows $\leftarrow a n l y$ adds $\theta((n-j))$ search cost.
- LU awl partial pivoting algorithmic: at each stage, swap rows to maximize the pivot
input $A \in \mathbb{C}^{n \times n}, b \in \mathbb{C}^{n}$

1. initialize $U=A, L=I_{n \times n}, P=I_{n \times n} \longleftarrow$ stores the swaps
2. For $j=1$ to n
(i) find $k=\underset{i=1}{\operatorname{argmax}}\left\{\left|u_{i, j}\right| \xi \longleftarrow \int^{\text {cost }} \theta\left(n_{i-j}\right)\right.$
ψ^{\uparrow} entice to search
(ii) pivot:
(ii.) for $i=j+1$ to n
(a.) $l_{i j}=u_{i j} / u_{j J}$
(b.) $u_{i, j: n}=u_{i, j, n}-l_{i, j} u_{j, j: n}$
(c.) $b_{i}=b_{i}-l_{i j} b_{j}$

then: $P A=L U$

- Question: is Gaussian Elimination + pivoting \longrightarrow substitution stable? backward stable?
(lectures 17 \& 22)

1. Conditioning: given $A \in \mathbb{C}^{n \times n}, b \in \mathbb{C}^{n}$ the woist-cose conditioning of the problem: find $x=A^{-1} b$ is $K(A)=\|A\|\left\|A^{-1}\right\| \quad\left(=\sigma_{\text {max }} / \sigma_{\text {min }}\right.$ if use $\left.\|\cdot\|_{z}\right)$ - recall conditioning of linear transforms lecture

- $\| 1$-conditioned if $\sigma_{\min } \ll \sigma_{\text {max }},\left\|A^{-1}\right\| \geqslant\|A\|$

2. Stability of Bock (or formed) Sub:

The: given $U \in \mathbb{C}^{n \times n}$ upper triangular, then solving for x st. $U_{x}=6$ via substitution
is backward stable, ie. the computed sols
\tilde{x} satisfies:

$$
(U+\delta U) \tilde{x}=b
$$

where: $\left|\delta u_{i j}\right| /\left|u_{i j}\right| \leq n \varepsilon_{m}+\theta\left(\varepsilon_{n}^{2}\right) \forall i \leq j \quad \therefore\|s U\| /\|v\|=\theta\left(\varepsilon_{m}\right)$.
3. What about Gaussian Elimination: $A \rightarrow P, L, U$?? (lecture 2Z)

- Gaussion Elimination is explosively unstable for some pattrological examples
bat... in pradive is always* stable... acts as if bakwad stable for neol problems.
(* for the class of motinces a peesing in neal problows)
- First, Ganssian Elimination + pivoting is neithes stable nor backword stable - in the following we assume $A=P A$ (pivot to optimal order a priori)
- Thm: given $A=L U \in \mathbb{C}^{n \times n}$, compuk \tilde{L}, \tilde{U} vio Ganssion Elimination then:

$$
\tilde{L} \tilde{U}=A+\delta A, \quad\|\delta A\|=\|L\|\|U\| O\left(E_{m}\right)
$$

bakward slabilily.. like $Q R, \tilde{L} \neq L$ and $\tilde{U} \notin U$ orly hope $\tilde{L} \tilde{U} \simeq A$...

- problem: w/ pivoting, $\left|l_{i}\right| \leqslant 1 \quad w /=$ iff $i=j$ so $\|L\|=\theta(1)$
in any nolus. so

$$
\|S A\|=\|U\| \sigma\left(\varepsilon_{m}\right)
$$

but, \|U\|l an be » \|A\|l so the relative ellor
$\|\delta A\| /\|A\|=\underbrace{\|U\| /\|A\|}_{\text {lorge... }} \theta\left(\varepsilon_{m}\right)$ con be large

- define: the growth factor $\rho=\frac{\max _{i}\left|u_{i j}\right|}{\max _{i j}\left|a_{j j}\right|}$. then $\|U\|=O(\rho\|A\|)$
- Thm: given $P A=L U, A \in \mathbb{C}^{n \times n}$ computed vio Gonss. Elime. w/ patial pivating then $\tilde{P}=P$ for sufficiently small ε_{m} if $\left|\ell_{j}\right|<1$ for all iry (no ties in pivating choice) and

$$
\tilde{L} \tilde{U}=\tilde{P} A+\delta A \text {, wher: } \frac{\|\delta A\|}{\|A\|}=O\left(\rho \varepsilon_{m}\right)
$$

- then, backward slable if $\rho=\theta(1)$ in a...
but, conside:

$$
A=\left[\begin{array}{ccccc}
1(1) & & & 1 \\
-1 & 1 & & \\
\hdashline 1 & -1 & 1 & \\
\hdashline-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{array}\right] \text { then } U=\left[\begin{array}{llll}
1 & & & 1 \\
1 & & & \\
& 1 & & 2 \\
& & & 8 \\
& & & 8 \\
& & & 16
\end{array}\right] \text { so } \rho=16=2^{n-1}
$$

- Foct: $\rho \leq 2^{n-1}$ and \exists a sequence of $\varepsilon A^{(n)} \xi_{a=1}^{\infty}, A^{(n)} \in \mathbb{C}^{n \times n}$ s.t. $\rho=2^{n-1} \ldots$
- looks like a disaster, lose $\theta(n)$ digits of accuracy for linear systems size axn!!!
- in practice: extremely rare. $\rho \ll z^{n-1} \longleftarrow$ trost this!

Thursday- 04/20/2023 - Least Squares Problems

- Logistics:
- HD 3 posted, due next Tuesday

Goals:

- Least Square Problems:
- motivation - dangers of exact soln's
- definition \$ geometry
- the normal ego's us. projection
- direct methods:

1. Projection $\$ Q R$
2. Normal eqn's \$Cholesky
3. Psuedo-inversion \$ SVO

- Motivation - Approximate Soln's \& Fitting:
- Ex: Consider the interpolation problem:

1. sample times $\left\{1, \xi_{j=1}^{n} \in \Omega\right.$
2. signal: $f(t) \rightarrow\left\{f_{1}\right\}_{j=1}^{n}, f_{j}=f(t)+\varepsilon$
try b_{0} interpolate $w /$ function basis $\sum b_{k} \xi_{k=1}^{n}, b: \Omega \rightarrow \mathbb{R}$

- Ex: $b_{1}(t)=1, b_{2}(t)=t, \ldots b_{k}(t)=t^{k-1} \quad$ (poly, inter.)
wont coefficient vector \dot{c} sit.
$g(t 1 c)=\sum_{k=1} c_{k} b_{k}(t)$ irntepolakes f at the samples

$$
g(1,1 c)=\sum_{k=1}^{\dot{E}} c_{k} b_{k}\left(l_{1}\right)=f\left(l_{1}\right)=f_{J}
$$

$$
g(11 c)
$$

Problem: on interpolant $g(t / c)$ only exists if $f \in$ range (B)
numerically very risky...
and is unique of B is full rank ($m \geq n$, lin ind. col's) over fitting! mastabk!

- two ideas: I. add basis functions wail $f \in$ range $(B) \Rightarrow M=n \Rightarrow$ for polynomials, M dato points \Rightarrow degree $m-1$ polynomial

2. give up on exact solis's (interpolation) and approximate instead (fit)

- Least Squares Problems... Solving $A x \approx b$
- Suppose: given A man and $b m \times l$]
usually seek x st. $A x=b$, often occurs when overconstroined.
what if $b \notin$ range (A) ?
then no x exists sit. $A x=b$$\quad \begin{gathered}m \text { eqn } \\ m>n\end{gathered}$
this is the standard setting when fitting data to a model:

$$
\text { data }=A x+\text { measmament error }
$$

so data \notin longe of A
or,
data $\approx A x$ but w/ modeling error

so, no x exists sit $A x=b$, let's find x st.
$A x$ is as close to b as possible, that is
x that minimizes the discrepancy:

$$
\text { discrepancy }=A x-b \text { want } A \times \approx b \text { so }
$$

LS problem: find x which minimizes $\|A x-b\|_{2}$ equivalent to:
find x which minimizes $\|A x-b\|_{2}^{2}=\sum_{i=1}^{m}(A x-b)_{i}^{2}$
$=$ sum of squares of discrepancy.

- Fact: the LS problem has a soln for all $A \$ b \longleftarrow a$ soln always (note: the soln may not be unique) exists
- What about uniqueness? suppose x_{*} to the LS problem and \exists

$$
\begin{gathered}
z \in n n \|(A), \quad z \neq 0 \\
\left\|A\left(x_{*}+z\right)-b\right\|^{2}=\|A x_{*}+\underbrace{A z}_{0}-b\|^{2}=\left\|A x_{*}-b\right\|^{2}
\end{gathered}
$$

then $x_{*}+z$ is also a soln, so soln's are not unique.

- Fact: the LS problem has a unique sold iff A is full rank (linearly independent columns $\Rightarrow m \geq n$
- LS problems are the most widely solved opt. problems...

1. data is often noisy, noise \sim Gaussian dist, prob $\propto \exp \left(-\|\right.$ discrepancy $\left.\|^{2}\right)$
2. LS problems are "easy" to solve at large scale
3. LS problems admit many methats/approaches
4. Ls problems are easily generalized, adaptible

- ok, so how do we solve them?
- A geometric soln for LS problems:
- given A man, $b m \times 1$ find: $x_{*}=\underset{x \in \mathbb{C}^{n}}{\operatorname{argmin}}\left(\|A x-b\|^{2}\right)$
- a picture to build intuition...

- notice: x_{k} is chosen such that the discrepancy is \perp to the range (A).

- $b \in \mathbb{R}^{m}$ so $A x-b \in \mathbb{R}^{m} \therefore$ con de compose the discrepancy into
a component in range (A) and $a\left\|\|\left(A^{*}\right) \ldots\left(\right.\right.$ ($n n d$. Thu: $\mathbb{R}^{m}=\operatorname{range}(A) \oplus$ null $\left(A^{*}\right)$)

$$
A x-b=(A x-b)_{\| \text {range }(A)}+(A x-b)_{\| \text {null }}\left(A^{*}\right) \leftarrow=1 \text { range }(A)
$$

- moreover $(A x-b)_{\| r a n g e(A)}$ is $\perp(A x-b)_{\| n u l l\left(A^{\top}\right)}$ (Fund. Tho. part III)
so, by pythogorus:

$$
\text { (*) }\|A x-b\|^{2}=\underbrace{\left\|(A x-b)_{\| r a n g e(A)}\right\|^{2}}_{\text {depends on } x}+\underbrace{\left\|(A x-b)_{\left.\|n n\|(A)^{\top}\right)}\right\|^{2}}_{\text {some for all } x}
$$

so, minimizing $\|A x-b\|^{2}$ is the same as minimizing $\left\|(A x-b)_{\| r a n g e(A)}\right\|^{2}$

$$
(* *) b_{\text {ilrangec(A) }} \in \operatorname{ronge}(A) \text { so } \exists \text { an } x_{*} \text { st. }\left(A x_{*}-b\right)_{\text {IIronge }(A)}=0
$$

\therefore by (x) $\|A x-b\|^{2} \geq\left\|(A x-b)_{\|n\| \|(A)}\right\|^{2}$ for all x
and by $(* *)$ at x_{*} st. $(A x-b)_{\| r a n g e(A)}=0,\|A x-b\|^{2}=\left\|(A x-b)_{\|n u\|\left(A^{*}\right)}\right\|^{2}$
so if x_{*} solves the LS problem then $\left(A x_{*}-b\right)_{\text {lirange }(A)}=0 \ldots$
\therefore discrepancy is \perp range (A), discrepancy \in null $\left(A^{*}\right)$

- alternate picture:

at soln x_{*} the discrepancy must be \perp to range (A), since it is a radial vector to the circle/sphere centered ot b of smallest radius intersecting range (A). The circle must be tangent to the range there, so the radial vector is \perp the range.
\therefore discrepancy \in null (A*)
- Consequence: at soln X_{*}, discrepancy $\in \operatorname{null}\left(A^{*}\right)$
so...

$$
A^{*}(\text { discrepancy })=A^{*}\left(A x_{*}-b\right)=0
$$

rearrange:
$\underbrace{\left(A^{*} A\right) x_{*}=A^{*} b} \longleftarrow$ but this is a linear system!!
the normal eqn's

- Con solve all LS problems by solving a linear system!
- The: given $A \in \mathbb{C}^{m \times n}, m \geq n$ wI linearly ind. col's (full rank) and $b \in \mathbb{C}^{m}$ then the LS problem:
find $x_{k}=\operatorname{argmin}\left\{\|A x-6\|^{2}\right\}$
has a unique sola for any b, and x_{k} is the unique soln to the $n \times n$ linear system:
(normal en's) $\left(A^{*} A\right) x_{*}=A^{*} b$.
if $m \geq n$ then "ovecconstrained", more constraints than degrees
of freedom:

$(n \times m) \times(m \times n)=(n \times n), \quad(n \times m) \times(m)=(n)$

$$
\begin{aligned}
& \text { then: } \hat{\imath}\left[A^{*} A\right][x]=\left[A^{*} b\right] \begin{array}{l}
\hat{\imath} \\
\hat{l}
\end{array} \\
& (n \times n) \times(n)=(n)
\end{aligned}
$$

- the normal can's compress the problem to on men system of equations:
- notice: if A man, full rank then $A^{*} A$ is non, fall rank (lin. ind. rolls) so $\left(A^{*} A\right)^{-1}$ exists...

$$
x_{*}=\underbrace{(b)}_{\text {poco: } \left.A^{*} A\right)^{-1} A^{*}}=A^{1} b
$$

- Def: given $A \in \mathbb{C}^{m \times n}, m \leq n$, full rank, the psendo-inerese of A is

$$
A^{t}=\left(A^{*} A\right)^{-1} A^{*}
$$

and $A^{+} b=x_{*}$ solves the is problem, minimize $\|A \times-b\|^{2} \forall b \in \mathbb{C}^{-}$

- how to compute $A^{+}=\left(A^{*} A\right)^{-1} A^{*}$?
use a decamp to avoid explicit inverses...
- Ex (SVD): $A=U \varepsilon V^{*} \Rightarrow A^{*}=V \varepsilon^{*} U^{*}$

$$
\begin{aligned}
& A^{*} A=V \varepsilon^{*} U^{*} \cup \Sigma V^{*}=V \underbrace{\varepsilon^{*} \varepsilon V_{(m)}^{*}}
\end{aligned}
$$

so,

$$
A^{t}=V \sum^{t} U^{*}=\left[\begin{array}{ccc}
v_{1} & 1 \\
1 & v_{n} \\
1 & & 1
\end{array}\right]\left[\begin{array}{ccc}
1 / \epsilon_{\varepsilon_{1}} & & \\
& \ddots & \\
& & 1 / \sigma_{n}
\end{array}\right]\left[\begin{array}{r}
-u_{1}^{*} \\
\\
\\
\vdots \\
-u_{n}^{*}
\end{array}\right]
$$

- So, applying $A^{+} b$ implicitly:

1. $A=\cup \varepsilon V^{*}$
2. $w=\left[\begin{array}{l}-u_{i}^{\prime}- \\ -u_{n}^{\prime}-\end{array}\right] b$
3. $y_{j}=\frac{1}{\sigma_{j}} w_{1}$
4. $x_{*}=V y$.

- alternatively: discrepancy $=\left(A_{x_{*}}-b\right) \in$ null $\left(A^{*}\right)=\operatorname{range}(A)^{\perp}$

$$
\therefore\left(A_{x_{*}}-b\right)_{\text {IIrange(} A)}=0 \text { so } \underbrace{\left(A x_{*}\right)}_{\text {already } \in \text { range }(A)}{ }_{\text {urine(} A)}=b_{\text {range }(A)}
$$

$$
A x_{*}=b_{\text {IIrange }(A)} z_{a} \text { linear system! }
$$

- Soln: given A man, fall rank

1. $A=Q R, Q_{\text {man }}, R_{\text {nan }}$

2. solve $R x_{*}=Q^{*} b \quad w /$ substitution

[notice: same as plunging $A=Q R$ into A^{+}.

$$
\begin{aligned}
x_{*}=A^{*} b & =\left(A^{*} A\right)^{-1} A^{*} b=(R^{*} \underbrace{Q^{*}}_{=1} Q^{R})^{-1} R^{*} Q^{*} b=\left(R^{*} R\right)^{-1} R^{*} Q^{*} b \\
& =R^{-1} \underbrace{R^{*} R^{*}}_{i=} Q^{*} b=R^{-1} Q^{*} b \text { so } x_{*}=R^{-1} Q^{*} b \Rightarrow R x_{*}=Q^{*} b .
\end{aligned}
$$

- gives three different direct methods...
decamp based, solve exactly in exact arithmetic in finitely many skeps

Stability

1. Solve w/ QR (projection based)
2. Solve w/ SVD (punedorinacse based)
3. solve w/ normal epations (LU of $A^{*} A \rightarrow$ Chomsky)
stable enough (bookwod stable) most stable (booked stock) unstable!! (spores $k(A)$ when a good fit is available!!!

Cost
in-behmeen (usually, fort cough) slowest fasts exploits symenety

- Comparison of direct methods:
the Goldilocks method, compromise stability \$ speed,
* numerical method of choice (usually)

1. Projection: use $Q R$.
a) $A=Q R$ (Householder) \leftarrow backward stable, cost: $\sigma\left(2 \mathrm{mn}^{2}-2 / 3 \mathrm{n}^{3}\right)$
b) compute $Q^{*} b \quad$ (implicit) \leftarrow cord $=1$, backward stable $(m \geq n)$, cost: $O(m n) \leftarrow$ naive
c) solve $R x_{k}=Q^{+} b \quad$ (Substitution) \leftarrow backward stable, cost: $\theta\left(n^{2}\right)$

- Stability: back word stable, $\|(A+\delta A) \tilde{x}-b\|=\left\|A x_{2}-b\right\|, \quad \frac{\|\delta A\|}{\|A\|}=\sigma\left(\varepsilon_{m}\right)$ conditioning $=$ conditioning of original is problem
- Cost: $\sim 2 m^{2}-2 / 3 n^{3}$ (cost of $Q R$)

2. Psuedo-Inverse: use SVD
a) $A=U \varepsilon V^{+}$(we don't know how to do this yet) $\leftarrow ? ?, \cos t \theta\left(2 \mathrm{mn}^{2}+11 n^{3}\right)$
b) $y_{j}=\frac{1}{\sigma_{j}}\left(u_{j}^{*} b\right) \longleftarrow$ conn: $k(a)$, backward stable (nsa), cost $\theta\left(m_{n}\right)$
c) $x_{k}=V_{y} \longleftarrow$ cond $=1$, backward stable, cost $\theta\left(n^{2}\right)$

- Stability: back word stable, $\|(A+\delta A) \tilde{x}-b\|=\left\|A x_{k}-b\right\|, \frac{\|\delta A\|}{\|A\|}=\sigma\left(\varepsilon_{m}\right)$ conditioning $=$ conditioning of original is problem
- Cost: $\sim 2 \mathrm{mn}^{2}+11 n^{3}$ (cost of SVD... rough)

3. Normal Equations. use Cholesky (LU for $\left.A^{*} A\right)^{*}$ Most naive implementations $B E$ CAREFUL
a) $y=A^{*} b \longleftarrow$ backward stable $(n \leq m)$, cond= $\varepsilon(A)$, cost $\theta(m a)$
b) $M=A^{*} A$ backward stable $(n \leq m)$, butt.. squares conditioning, cost $O\left(m n^{2}\right)$
c) $M=L U \longleftarrow$ unstable, backward stable in practice, cost $O\left(2 / 3 n^{3}\right)$
d) solve $L_{w}=y \quad\left(w=L^{-1} y\right.$, implicit via reduction) \leftarrow backward stable, condo. $=1$ w/ pivoting, cost $\theta\left(n^{2}\right)$
e) solve $U x_{*}=w$ (Lac k-sub) \leftarrow backward stable, cost $\theta\left(n^{2}\right)$

- Cholesky replaces skep c) wd
c') $M=R^{*} R(R \quad n \times n$, upper triangular) all backwards stable
d) solve $R^{*}{ }_{w}=y \quad\left(y=R_{y}^{*-1}\right.$, implicit via reduction)
e^{\prime}) solve $R x_{*}=w$ (bock -sub)
cost of Cholesky $=1 / 3 n^{3}$
(half the cost, exploits symmetry of M)
- Stability: Unstable. Squares the conditioning when K(A)
large, or, when a good fit (small discrep soln) is available!!!
- Cost: $\sim m n^{2}+1 / 3 n^{3} \quad(1 / 2$ cost $w / Q R)$
- The Cholesky Decomposition: symmetrized LU (see lecture 23)
- Given $M \in \mathbb{C}^{\text {mam }}$ (square) that is

1. Hermitian: $M^{*}=M$
2. positive-definite: $x^{*} M_{x}>0 \forall x \neq 0$
then $\exists R \in \mathbb{C}^{n \times n}$, upper triangular s.1.
$\mathbb{T}_{\text {like } \iota \cup} \hat{}$ except "L" = "U""

- Fact: if $M=A^{*} A, A \in C^{m \times n}$ full rank then M is Hermitian and positive definite.
- We will continue this story in HW $4 \ldots$
- This completes our study of direct methods
going forward will use iterative loptimization methods.

Week 6-Itarative Methods for LS problems (and intro to optimization)

- Logistics:
- Project 1 due Wednesday
- WW 3 due Thursday
- HW 4 posts tonight, due next Thursday

Goals:

- LS as an optimization problem
- general samey of optimization $\$$ system solving
- geneal survey of methods
- Convergence rate analysis
- Ex:
- gradient descent for least squares
- Convergence rakes, conditioning and scaling
- accelerating gradient descent (momentum a accelerated GD)
- Preview to: Sloppy but cheap (SGD) vs. careful bet expensive (CGLS)
- Least Spares as O_{p} timization:
- given $A \in \mathbb{C}^{m \times n}, m \geq n$, full rank, $b \in \mathbb{C}^{m \times 1}$ goal
find $\underbrace{x \in \mathbb{C}^{n}}$ minimizing:

$$
\underbrace{}_{\text {domain is }} f(x)=\|A x-b\|_{2}
$$

all of C^{n}

$$
\left[\begin{array}{c}
\cdots
\end{array}\right],\left[A_{x}\right]_{1}=\left(i^{\text {th }} \text { row of } A\right) \cdot x
$$

$f(x)=\left\|A_{x}-L\right\|_{2}^{2}=\sum_{i=1}^{n}\left(\left[A_{x}\right]_{i}-b_{i}\right)^{2}$

$$
x_{*}=\operatorname{argmin}_{x \in \mathbb{C}^{n}}\{f(x)\}
$$

$\left(\left[A_{x}\right]_{i}-b_{i}\right)^{2}$ error in the
where $f: \mathbb{C}^{n} \rightarrow \mathbb{R}$,
approx:

$$
f(x)=\|A x-b\|^{2}
$$

$\left(i^{\text {th }}\right.$ row of $\left.A\right) \cdot x \approx b$.

- Optimization more generally:
find $x_{x}=\underset{x \in \Omega}{\operatorname{argmin}}\{f(x)\}, \quad f: \Omega \rightarrow \mathbb{R}$
- domain: $\Omega \quad$ objective: f
- nonlinear system: $h(x)=\left[\begin{array}{c}h_{(x)} \\ h_{2}(x) \\ \vdots \\ h_{m}(x)\end{array}\right], \quad h_{i}: \Omega \rightarrow \mathbb{C}$
solve $h(x)=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right] \longleftarrow$ linear system: $h_{i}(x)=[A x]_{i}-b_{\text {i }}$
generally, there are not direct approaches for solving

$$
h(x)=0
$$

in arbitrary dimensions if h are nonlinear...

Ex: Suppose $h_{i}(x)$ is a polynomial degree >1
at simplest h_{i} is quadratic

- if degree $=2$, solving $h(x)=0$ is equivalent
to finding the coots of a degree 2 m polynomial (f $m>3$) impossible $2 m>4$.
- convert into optimization problem: $f(x)=\|h(x)\|$
- Ex: $f(x)=\|h(x)\|_{p}=\left[\sum_{i=1}^{n}\left(\left|h_{i}(x)\right|^{p}\right)\right]^{1 / p}$
- LS: h_{i} are linear, $p=2$.
- Classifying Optimization:
- domain Ω : 1 . is a pointsef \Rightarrow discrete/combinatorial opt. (cs)

2. $\Omega \subset \mathbb{R}^{1}, \Omega \neq \mathbb{R}^{n} \Rightarrow$ constrained opt. problems
3. $\Omega=\mathbb{R}^{n} \Rightarrow$ unconstrained problem $\leftarrow L S$ problems

- objective:

1. convexity of $f: f$ is convex over a set s if
for any $x_{1}, x_{2} \in S$, and any $t \in[0,1]$

- Ex: if Ω is compact, f is strictly convex then \exists a unipe minimizes x_{*} (global)
Ex: if f is bounded below, strictly convex \Rightarrow if $]$ a
minimizes x_{*} then it s unique $\leftarrow L S$ problems when A is
full rank.
- f is locally convex, if f is convex over a set $s \in \Omega$
- f is nonconces if it is not globally convex $L_{\text {typically }}$ hard, admit mary local minima...

2. smoothness of f : how differentiable is f ?

- what derivatives exist B where

Key to controlling

- how large are high order derivatives of local information
- LS problems have quadratic f : all derivatives exist
but they may differ in scale...
- how to extend local information... local models, Taylor series...
- Ex: expand $f(x)$ about some iterate x_{k} :

$$
f(x) \simeq f\left(x_{k}\right)+\nabla_{k} f\left(x_{k}\right)^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} H\left(x_{k}\right)\left(x-x_{k}\right)
$$

$$
\text { - where } \begin{aligned}
\nabla_{k} f\left(x_{k}\right)=\left[\begin{array}{c}
\partial_{1} f\left(x_{k}\right) \\
\vdots \\
\vdots \\
\partial_{x_{n}} f\left(x_{k}\right)
\end{array}\right], H\left(x_{k}\right)=\left[\begin{array}{ccc}
\partial_{x_{1}}^{2} & \partial_{k_{1}} \partial_{x_{2}} & \cdots \\
\partial_{2} \partial_{k_{1}} & \partial_{2}^{2} \\
\vdots & \ddots & \\
& \left.f(x)\right|_{x=x_{k}} \\
& f(x) \simeq f\left(x_{k}\right)+\nabla_{k} f\left(x_{k}\right)^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} H\left(x_{k}\right)\left(x-x_{k}\right)+\theta\left(\| x \cdot x_{k} \prime^{3}\right)
\end{array}\right.
\end{aligned}
$$

local quadratic model \Rightarrow takes the some form
as f for a LS problem.

- Optimality criteria:
$\left.\begin{array}{l}\text { - Ex: if } \alpha_{k} \in \text { interior of } \Omega, f \text { is convex on a neighborhood } \\ S \text { containing } x_{*} \text { then } x_{*} \text { is a local minimizer }\end{array}\right\} \begin{aligned} & \text { st order optimality } \\ & \text { criteria }\end{aligned}$ if $\nabla_{x} f\left(x_{*}\right)=0 \leftarrow_{\text {LS problem. }}$
- Ex: if problem is constrained \Rightarrow different criteria
(Lagrange multipliers, KKT conditions)
- Methods (iterative) for convex optimization:
-idea: sequence of guesses to the soln x_{*} that get better with each update

$$
\left\{x_{k}\right\}_{k=0}: x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow \ldots \simeq x_{*}
$$

- typically update $x_{k} \rightarrow x_{k+1}$ using $f\left(x_{k}\right), \approx \nabla f\left(x_{k}\right), \approx H\left(x_{k}\right) \ldots$
use:

1. history of iterates 2. history of local estimate
\Rightarrow leads to methods employing "momentum" or "acceleration"

- typically: $x_{k+1}=x_{k}+s_{k} z_{k}, \quad \Omega \subseteq \mathbb{R}^{n}$
$\left.\begin{array}{l}\text { - where } s_{k} \in \mathbb{R} \quad \text { (skep size) } \\ \text { - where } Z_{k} \in \mathbb{R}^{\wedge} \text { (skep direction) } \\ \uparrow\end{array}\right\} \begin{aligned} & \text { choosing these } \\ & \text { strategically }\end{aligned}$
- def: a direction Z_{k} is a descent direction
if, for all sufficiently small s

$$
\underbrace{f\left(x_{k}+s z_{k}\right) \leq f\left(x_{k}\right)}_{\text {descent step. }}
$$

- order of a method is the degree of derivatives used to
compute $\boldsymbol{Z}_{\boldsymbol{k}}$:
$5^{\text {requires }} \theta(n)$ differences

1. if we only use $\approx \nabla_{x} f\left(x_{k}\right) \Rightarrow 1^{\text {st }}$ order (Grodicat descent)
2. if $\quad . . \quad \approx \nabla_{a} f\left(x_{k}\right), \approx H\left(x_{k}\right) \Rightarrow 2^{\text {nd }}$ order (Newton or guasi-Narten)

$$
L_{\text {reprices }} \theta\left(n^{2}\right) \text { differences }
$$

- tradeoff: $Z^{\text {nd }}$ order methods are faster per step but steps are mare expensive β less-robust (require more controls)
- we con speed computation of updak z_{k} by using cheaper local approximations:

1. limiting the \# of variables x_{j} that can change per subsample col's of $A \times=b$
up dote \Rightarrow coordinate descent
2. . , if

$$
\begin{aligned}
& \text { 01, if } \\
& \left.\qquad f(x)=\sum_{i=1}^{m} f_{i}(x) \leftarrow f(x)=\|h(x)\|_{p}^{p}=\sum_{i=1}^{m}\left|h_{i}(x)\right|^{p}\right\} \text { sub-somple rows of } A x \approx b \\
& \text { update using subsets of } f_{i} \text { at each skep }
\end{aligned}
$$

- in either approach ordering of the subsets chosen controls convergence rate
- Often better to perform bbckwise in a ronctom
or stochastic patten \Rightarrow Stochastic Gradient Descent.
- for LS: choose sampling of rows B al's
based on their relative norms
- Stochastic Godient Descent for LS.
- Convergence Rates: rate at which error $\left\|x_{k}-x_{\star}\right\|$ goes to zero
- typically: statements like, \exists - constant $C>0$ st.

$$
\begin{aligned}
& \left\|x_{k+1}-x_{*}\right\| \leq C\left\|x_{k}-x_{*}\right\| \Rightarrow \text { errors decay geometriady } \\
& \left\|x_{k}-x_{*}\right\| \leq C^{k}\left\|x_{0}-x_{*}\right\|
\end{aligned}
$$

most iterative methods for solving is problems
$I_{\text {conregace is controlled }} l$, this constant C.
for LS, depends on method used
and the conditioning of the matrix A

- def: a sequence $\left\{x_{k}\right\}_{k \cdot 0}$ convenes lincoaly if $\left\|x_{k}-x_{1}\right\|=\theta\left(\left\|_{k_{k}}-x_{0}\right\|\right), 5^{\text {fist oder methods }}$
quodalically if $\left\|x_{k}-x_{1}\right\|=\theta\left(n x_{k-1}-n^{2}\right)$, ce. ©highe order methods

Thusdoy-04/27/2023 - Iterative Methods for LS

- Logistics:
- HW 4 posted, due next Thursday

Goals:

- The LS objective B quadratic objectives
- Gradient Descent:
- fixed step size
- exact line search
- Momerturer $\$$ Acceleration for ill-conditioned problems
- Last Class: surveyed optimization problems - Today: focus on LS
- Least Sganes: given $A \in \mathbb{C}^{m \times 1}$, full rank, $b \in \mathbb{C}^{m}$ find $x_{i} \in \mathbb{C}^{n}$ s.l.

$$
x_{*}=\underset{x \in \mathbb{C}^{*}}{\operatorname{argmin}}\left\{\|A x-b\|^{2}\right\}
$$

- domain: $\Omega=\mathbb{C}^{\wedge}$
- objective: $f: \Omega \rightarrow \mathbb{R}, f(x)=\frac{1}{2}\|A x-b\|^{2}=\frac{!}{2}(A x-b)^{*}(A x-b)$

$$
\begin{aligned}
& =\frac{1}{2}\left(x^{*} A^{*} A x-x^{*} A^{*} b-b^{*} A x+b^{*} b\right) \\
& =\frac{1}{2}(x^{*} A^{*} A x-2\left(A^{*} b\right)^{*} x+\underbrace{b^{*} b}_{\left\|b^{2}\right\|}) \\
& \quad \uparrow \\
& M=A^{*} A \text { is Hermilion positive definite }\left(x^{*} M_{x}>0 * x \neq 0\right) \\
& \text { so } f \text { is convex }
\end{aligned}
$$

- view as special case of:
- general quadratic (convex) objective:

$$
\begin{array}{ll}
f(x)=\frac{1}{2}\left(x^{*} M x+2 y^{*} x+c\right), & M \in \mathbb{C}^{n \times n} \text { Hermitian p.d. } \\
& y \in \mathbb{C}^{n}, \quad c \in \mathbb{R}
\end{array}
$$

- $E_{k}:$ if $f: \Omega \rightarrow \mathbb{R}$, convex at x_{*}, analytic:

$$
\begin{aligned}
& f(x) \simeq f\left(x_{*}\right)+\left(\nabla_{k} f\left(x_{k}\right)\right)^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{*}\right)^{\top} H\left(x_{*}\right)\left(x-x_{*}\right)+\theta\left(\left\|x-x_{*}\right\|^{3}\right) \\
& \begin{array}{cc}
\uparrow \\
c / 2 & \prod_{1} \\
+y_{1}=0 & \text { if } x_{*}
\end{array} \\
& \text { is load minimize }
\end{aligned}
$$

- Moral:: study optimization on 15 objective
to study generic behavior of optimizers near local controls steps for $2^{\text {ad }}$ minima, or, when using a local quadratic model order methods
- Can also view as special case of system solving via optimization:

$$
h: \Omega \rightarrow \mathbb{C}^{m}, h_{i}: \Omega \rightarrow \mathbb{C}, \quad h(x)=\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
\vdots \\
h_{m}(x)
\end{array}\right]
$$

aim to solve:

$$
h(x)=\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{m}(x)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]=0
$$

so, minimize residual: $\quad\left|h_{1}(x)\right|^{p} \quad\left|h_{1}(x)-0\right|^{p}$

$$
\begin{aligned}
& \|h(x)\|_{p}^{p}=\sum_{i}\left|h_{i}(x)\right|^{p}=\left|h_{2}(x)\right|^{p}=\left|h_{2}(x)-0\right|^{p} \\
& \begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \\
\left|h_{m}(x)\right|^{p} & \left|h_{m}(x)-0\right|^{p}
\end{array}
\end{aligned}
$$

for LS: $h(x)=A x-b, p=2$

$$
h(x)=\left[\begin{array}{c}
{\left[A_{1}\right]_{1}-b_{1}} \\
{\left[A_{1}\right]_{2}-b_{2}} \\
\vdots \\
{\left[A_{x}\right]_{m}-b_{m}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right]=0
$$

so, minimize residual:

$$
\left|[A x]_{1} \cdot b_{1}\right|^{2}
$$

$$
\|h(x)\|^{p}=\|A x-b\|^{2}=\sum_{i=1}^{n}\left|\left[A_{x}\right]_{i}-b_{i}\right|^{2}=\begin{gathered}
\left|\left[A_{x}\right]_{2}-b_{z}\right|^{2} \\
\vdots \\
\\
\left|\left[A_{x}\right]_{m}-b_{m}\right|^{2}
\end{gathered}
$$

- choose p to control regularity of $f(x)=\|h(x)\|_{p}{ }^{p}$ and the sense in which errors are small ($p \rightarrow \infty, \max$ error, $p \rightarrow 0, \#$ of constraints unsatisfied)
- when motivated by regression: depends on the error model in data

$$
(p=2 \Leftrightarrow \text { Gaussian errors) }
$$

- batching: only focus on subsets of rows/constraints or subsets of variables at a time...
- batch: only use variables x_{j} for $j \in S$, constraints $i \in C$ minimize $\sum_{i \in C}\left(\left[A_{x}\right]_{i}-b_{i}\right)^{2}$ over $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ x_{n}\end{array}\right]$ w/ x_{j} fixed unless $j \in S$

Ex: $S=\{1,2,4\}, \quad C=\{2,3\}$.

$$
\begin{aligned}
& \begin{array}{lll}
\uparrow & \uparrow & \uparrow \\
\epsilon S & \in S
\end{array}
\end{aligned}
$$

- Solving batched problems is the same as solving a LS problem sizes $m=|C|, n=|S|$ for small $|c|,|s|$ use direct methods (analytic answers available for $|c|=1$ or $|s|=1$)
- cost $\theta\left(2|c||s|^{2}-2 / 3|s|^{3}\right)$ per batch if direct, otherwise \rightarrow back to iterative LS methods
- pick batch order/sets stochastically \Rightarrow stochastic gradient methods
(convergence rate depends on sampling rale, usually not uniform over rows/col's)
- Shape of quadratic (LS) objectives:
are chase paplimizer

Taylor: $\left.\quad M=H\left(m_{m}\right), y^{*}=\nabla f\left(x_{2}\right), c=2 f\left(x_{s}\right)\right]$
- minimized at x_{*} then: $\nabla f\left(x_{*}\right)=0$

$$
\begin{aligned}
& \nabla f(x)=M x+y \text { so } \nabla f(x) I_{x=x_{*}}=M x_{k}+y=0 \longmapsto M_{x_{*}}=-y \mapsto x_{k}=-M^{-1} y \\
& \text { LS: Suede -inverse } M=A^{*} A, y=-A^{*} b \mapsto x_{k}=-M^{-1} y=\overbrace{\left(A^{*} A\right)^{-1} A^{*} b}
\end{aligned}
$$

simplify by shifting to be centered at $x_{\infty} \ldots$

$$
\begin{aligned}
& \frac{1}{2}\left(x-x_{*}\right)^{*} M\left(x-x_{*}\right)=\frac{1}{2} x^{*} M x-\underbrace{\left(M_{x_{*}}\right)^{*} x}_{M x_{*}=-y}+\underbrace{\frac{1}{2} x_{*}^{*} M x_{*}}_{\text {constant } d}=\frac{1}{2} x^{*} M_{x}+y^{*} x+d \\
& =f(x)+\text { some constant... } \\
& \text { so: } \\
& f(x)=\frac{1}{2}\left(x-x_{*}\right)^{*} M\left(x-x_{*}\right) \text { up to additive constant } \\
& \text { WLOG, assume } x_{*}=0 \text { (else, shift coordinate system) }
\end{aligned}
$$

so:

- M is Hermitian so it is unitarily diagonalizable, has real eigenvalues $\lambda_{\rho}(M)$ and \perp eigenvectors $V_{\rho}(M)$ s.t.

$$
M=V \Lambda(H) V^{*}
$$

LS: $M=A^{*} A$, if A has SVD

$$
A=U \& V^{*} \text { then: } A^{*} A=V \varepsilon^{*} \sum V^{*}
$$

$$
\tau_{v^{*}}=v^{-1}
$$

and is positive definite so $\lambda_{\jmath}(M)>0 \quad \forall \in[1, n]$.
so $\Lambda(M)=\varepsilon^{*}(A) \varepsilon(A)$
$\ldots \quad \lambda_{j}(M)=\sigma_{j}(A)^{2}>0$

- then

$$
\begin{aligned}
& f(x)=\frac{1}{2} x^{*} M x=\frac{1}{2} x^{*} V \Lambda(M) V^{*} x \\
& =\frac{1}{2}\left(V^{*} x\right)^{*}\left[\begin{array}{llll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]\left(v^{*} x\right) \\
& =\sum_{j=1}^{n} \frac{1}{2} \lambda_{j}(M)\left\|v_{j} * \times\right\|^{2} \\
& \text { length of projection } \\
& \text { of } x \text { onto } v_{J} \text { squared } \\
& \text { LS: } f(x)=\sum_{j=1}^{n} \frac{1}{2} g_{j}(A)^{2} \| \underbrace{\left\|v_{j}\left(x-x_{t}\right)\right\|^{2}}_{\text {length of projection }} \\
& \text { of residual onto } u_{j} \text { square }
\end{aligned}
$$

- Ex: $\lambda_{1}(M)=\sigma_{1}(A)^{2}=9, v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$\lambda_{2}(M)=\sigma_{2}(A)^{2}=\frac{1}{4}, \quad V_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
-along v_{1} :

- along v_{2} :

$\lambda_{1}(M)=\sigma_{1}(A)^{2}$ large $\Rightarrow f$ sensitive along v_{1}

$$
\lambda_{2}(M)=\sigma_{2}(A)^{2} \text { small } \Rightarrow f \text { insensitive along } v_{2}
$$

- curvature along v_{j} determined by $\lambda_{j}(M)$ (if $\lambda_{j}(M)>0$ cure up, $=0$ flat, co cure down)

$$
\left(M_{\text {p.d. }} \Leftrightarrow \lambda_{\jmath}(M)>0 \Leftrightarrow f \text { convex }\right)
$$

- plot $f(x)$ using isoclines (level sets)

$$
f(x)=c \Rightarrow \frac{1}{2} x^{*} M_{x}=c \Rightarrow \sum_{j=1}^{n} \lambda_{j}(M)\left\|v_{j}^{*} x\right\|^{2}=\frac{1}{2} c
$$

- Ex: $9\left\|v_{1}^{*} \times\right\|^{2}+\frac{1}{4}\left\|v_{i}^{*} x\right\|^{2}=2 c$... equation for on ellipse!
- principal axes $=v_{1}, v_{2}, \ldots$.f relative length $\sqrt{1 / \lambda_{j}}(M)=1 / \sigma_{\rho}(A)$

$$
\text { - In } f(x)=1 / 2 \Rightarrow 9\left\|v_{1}^{*} x\right\|^{2}+\frac{1}{4}\left\|v_{2}^{*} x\right\|^{2}=1
$$

if:

$$
\begin{array}{lllll}
\cdot x \| v_{1} \Rightarrow & v_{1}^{*} x=\|x\|^{2}, v_{2}^{*} x_{1} 1 v_{1} \\
\cdot x \| v_{2} \Rightarrow & \text { so } 9\|x\|^{2}=1 & \text { so }\|x\|=1 / 3 & \left(=1 / \sigma_{1}(A)\right) \\
v_{2}^{*} x=\|x\|^{2}, & v_{1}^{*} x=0 & \text { so } \frac{1}{4}\|x\|^{2}=1 & \text { so }\|x\|=2 \quad\left(=1 \sigma_{2}(A)\right)
\end{array}
$$

$f(x)$ is a quadratic bowl centered at x_{*} w/ elliptical isocline:

- principal axes are 11 to eigencators of M II to singular vectors of A - lengths $\propto \sqrt{\frac{1}{\lambda_{j}(M)}}=\frac{1}{\sigma_{j}(A)}$
- Iterative Solution: $f(x)=\frac{1}{2} x * M x$ where $M=A^{*} A$ (x centered so $x_{k}=0$)
- sequence of iterates (guesses at sola):
$x^{(0)} \longmapsto x^{(1)} \longmapsto x^{(2)} \longmapsto \ldots$ approaching the minimizer $x_{*}=0$
$\square^{\text {search direction, }}$ descent direction if
via recursive update rule: $x^{(k+1)}=x^{(k)}+s_{~^{k}} z^{(k)}$ $f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$ for
step length sufficiently small s_{k}
study convergence rate of $\left\|x^{(k)}\right\|$ (error $x^{(k)}-x_{*}$)
$f\left(x^{(k)}\right)$ (objective)
$\left\|\nabla f\left(x^{(k)}\right)\right\|$ (optimality, $\nabla f\left(x^{(k)}\right) \rightarrow 0$)
- $1^{s t}$ order methods: pick $z^{(k)}$ using $\left\{x^{(s)} \xi_{j=0}^{k},\left\{f\left(x^{(s)}\right)\right\}_{j=0}^{k}\right.$, and $\approx\left\{\nabla f\left(x^{(s)}\right)\right\}_{j=0}^{k}$
converge linearly: $\left\|x^{(k+1)}\right\|=\sigma\left(\left\|x^{(k)}\right\|\right) \leq C\left\|x^{(k)}\right\|$
so: $\left\|x^{(k)}\right\| \leq C^{k}\left\|x_{0}\right\|$ (typically light for worst case x)
I depends on method
errors/objective/gradients decoy geometrically in C. slow if C close to 1 .
- $\underline{2}^{\text {nd }}$ order methods: also use $\approx\left\{H\left(x^{(1)}\right)\right\}_{j: 0}^{k} \ldots$ achieve quadratic convergence: $\left\|x^{(k+1)}-x_{*}\right\|=\sigma\left(\left\|x^{(k)}-x_{x}\right\|^{2}\right)$
... much faster per skep, but: steps are expensive $\left(\theta\left(n^{2}\right)\right.$ to form $H, O\left(n^{2}\right)$ to
use it)
too expensive per step in high dimensions
- most iterative methods for LS are $1^{\text {st }}$ order (objective is already quadratic)
- Gradient Descent (for LS): greedy search direction...
-idea: pick $z^{(k)}$ to be the direction of fastest descent...

$$
z^{(k)} \|-\nabla_{x} f(x)
$$

then: $x^{(k+1)}=x^{(k)}-s_{k} \nabla_{x} f\left(x^{(k)}\right) \leftarrow G . D$. generic

- for $L S: \nabla_{A} f(x)=\nabla_{x} \frac{1}{2} x^{*} M_{x}=M_{x}$

so: $\quad x^{(k+1)}=x^{(k)}-s_{k}\left(M x^{(k)}\right)=\left(I \cdot s_{k} M\right) x^{(k)} \longleftarrow$ 6.D. quadratic
$A^{*} A$ for $L S$
- Question: how to choose the skep size s_{k} ?

Question: how to choose the step size s_{k} ?

- fix $s_{k}=s$ ahead of time (convergence rate will depend on "loaning rate"s)
-if $s_{k}=s$ then $x^{(k+1)}=x^{(k)}-s \nabla, f\left(x^{(k)}\right)=x^{(k)}-s M x^{(k)}=(I-s M) x^{(k)}$
so:
$x^{(k)}=(I-s M)^{k} x^{(0)}$. to optimize convergence, pick s to minimize

$$
\max _{J}\left\{\left|1-s \lambda_{j}(M)\right|\right\}=\max _{J}\left\{\|-s G_{j}(A)^{2} \mid\right\}
$$

optimal s is chosen st

$$
\left|1-s \lambda_{\min }(M)\right|=\left|1-s \lambda_{\max }(M)\right| \Rightarrow s=\frac{2}{\lambda_{\max }^{(M)}+\lambda_{\min }(M)}=\frac{2}{\sigma_{1}^{2}(A)+\sigma_{n}^{2}(A)}
$$

(note: optimizing s repairs spectral info... con be expensive to get, may require "direct" analysis...)
then: $\left\|x^{(k+1)}-x_{*}\right\| \leq C\left\|x^{(k)}-x_{*}\right\|$ so $\left\|x^{(k)}-x_{*}\right\| \leq C^{k}\left\|x^{(0)}-x_{*}\right\|$
where:

$$
C=\frac{\lambda_{\max }(M)-\lambda_{\min }(M)}{\lambda_{\max }(M)+\lambda_{\min }(M)}=\frac{\sigma_{1}^{2}(A)-\sigma_{n}^{2}(A)}{\sigma_{1}^{2}(A)+\sigma_{n}^{2}(A)}=\underbrace{1-\sigma\left(k(M)^{-1}\right)=1-\theta\left(K(A)^{-2}\right)}_{\text {very slow when ill -conditioned }}
$$

- so, for fixed s, the best case method (choice of s) has worst case rate $C=1-\sigma\left(\xi(A)^{-2}\right)$. (and the bound is light, achieved for worst-casc/adversaial $x^{(0)}$)
- choose s_{k} adaptively at each step.
- Line Search: if $Z^{(k)}$ is a descent direction then \exists s sufficiently small sat.

$$
f\left(x^{(k)}+s z^{(k)}\right)<f\left(x^{(k)}\right)
$$

- pickings is a I-D optimization problem...

- solve a proximately by back tracking...
- start w/ large s
- iteratively reduce s (backtrack) until $f\left(x^{(k)}+s z^{(k)}\right)$ is sufficiently small relative to $f\left(x^{(k)}\right)$.

- Exact line search: pick s_{k} to minimize bork track

$$
f\left(x^{(k)}+s z^{(k)}\right)
$$

(greedy skep size)

$$
\begin{aligned}
& \text { - aim: } S_{k}=\underset{s}{\operatorname{argmin}}\left\{f\left(x^{(k)}+s z^{(k)}\right)\right\}=\operatorname{argmin}\left\{f\left(x_{s}^{(k)}-s \nabla_{x} f\left(x^{(k)}\right)\right)\right\} \\
& \text { - For } f(x)=\frac{1}{2} x^{*} M_{x}, \nabla_{x} f(x)=M_{x} \Rightarrow s_{k}=\frac{x^{(k)} M^{2} x^{(k)}}{x^{(k)^{4}} M^{3} x^{(k)}} \square_{g^{(k)} M_{g} M_{g}^{(k)}}^{\left\|\nabla_{x} f\left(x^{(k)}\right)\right\|^{2}} g^{(k)}
\end{aligned}
$$

- GD w/ exact line search:
implementation: given $x^{(k)}$
where $S_{K}=\frac{x^{(k)^{*}} M^{2} x^{(k)}}{x^{(k)^{*}} M^{3} x^{(k)}}$
no need for spectral info
(i) compute $g^{(k)}=M_{x}^{(k)}$
(ii) compute $\alpha=\left\|g^{(k)}\right\|^{2}, \beta=g^{(k)^{*}}\left(M g^{(k)}\right)$ notice: solve on innese problem $A x_{*} \geqslant b$
(iii) set $s_{k}=\alpha / \beta$
(iv) $x^{(k+1)}=x^{(k)}-s_{k} g^{(k)}$
using only forward multiplication by A and A^{*}. Cheap if A is space.
- using a greedy step can speed convergence but...
- Convergence is still linear w/ $\left\|x^{(k+1)}-x_{\star}\right\| \leq C\left\|x^{(k)}-x_{\star}\right\|$ and

$$
C=\frac{\lambda_{\max }(M)-\lambda_{\min }(M)}{\lambda_{\operatorname{mox}}(M)+\lambda_{\min }(M)}=1-\theta\left(K_{2}(M)^{-1}\right)=1-\theta\left(K_{2}(A)^{-2}\right)
$$

is the same as for (best) fixed step-size and is achieved for adrersarial/worst-case input.

- in worst-case, no better than fixed step inkle...

G.D. follows a "Eg- zig" path...
- Worst-cose $x^{(0)}$ is $x^{(0)}$ parallel to $\lambda_{\text {min }}(M) V_{1}+\lambda_{\text {max }}(M) V_{2}=\sigma_{n}(A)^{2} v_{1}+\sigma_{1}(A)^{2} V_{2} \ldots$
- If A is ill-conditioned $K(A)$ is large $K(M)^{-1}=K(A)^{-2}$ very small, so C is close to one. Converge very slowly.
- The issue is scaling. if A is illiconditioned $f(x)$ is poorly scold, far more responsive/sensitive to some variables than others -as a result, get large gradients pointing in almost entirely
 the wrong direction!
- Zig-zog making many over-corrections to the sensitive variables while making extremely slow progress on the insensitive variables!!
- the worse the scaling the slower convergence.

- Momentum \$ Acceleration: (avoid zig-zagging)

$$
\left(P_{o}{ }_{\text {ra k }}\right)
$$

- Momentum. incorporate past search direction into current search direction (Nestor)
Acceleration: look ahead along past search direction to evaluate gradient
-W/ optimized parameters converge linearly w/ $C=1-\sigma\left(K(M)^{-1 / 2}\right)=1-O\left(K(A)^{-1}\right)$

$$
\text { (vs. G.D: } \left.1-\sigma\left(K_{2}(M)^{-1}\right)=1-\sigma\left(K(A)^{-2}\right)\right)
$$

- better, converge ot square root of conditioning of M, conditioning of A -still slow if very ill-conditioned...
- Question: Can we do better?

Week 7 - Iterative Methods and Eigenvalue Problems

Tuesday-05/0z/zoz3-Conjugate Gradient Descent and Iterative LS Solvers

- Logistics:
- HD 4 pasted, due this Thrisdoy
-WW 5 pasted, due next Thursday
- Goals:
- Improving Gradient Descent:
- Momentum and oaeleration
- Conjugate Gradient Descent:
- Itarive Methods and Maker Polynomials 「 $^{\cdot} C_{\text {onjugary }} \leqslant$ Conjugate Bases
- Minimizing the residual over subspaces a - Conjugate Gradient Descent
- Gradient Descent is Slow: aim, minimize $f(x)=\frac{1}{2}\left(x-x_{k}\right)^{\top} M\left(x-x_{k}\right)$ for M symmetric, positive definite for LS problem: $M=A^{*} A, \quad x_{*}=\left(A^{*} A\right)^{-1} A^{*} b$
- last week we sow that $6 D$ converges slowly when A or M
are ill-condilioned,

$$
\left\|x^{(k)}-x_{*}\right\|_{2} \leq C^{k}\left\|x^{(0)}-x_{*}\right\|_{2}
$$

where:

$$
\left.\begin{array}{rl}
C & =\frac{\lambda_{\text {max }}(M)-\lambda_{\min }(M)}{\lambda_{\text {max }}(M)+\lambda_{\min }(M)}=1-\theta\left(K(M)^{-1}\right) \\
& =\frac{\sigma_{\operatorname{mox}}^{2}(A)-\sigma_{\min }^{2}(A)}{\sigma_{\text {max }}^{2}(A)+\sigma_{\min }^{2}(A)}=1-\theta\left(K(A)^{-2}\right)
\end{array}\right\} C \approx 1 \quad \text { when } \quad \text { ill-conditioned }
$$

Momentum \& Acceleration: (avoid zig- zagging) ty adjusting our search direction...

- Momenture incorporate post search direction into caw rent search direction (Polo)

$$
x^{(k+1)}=x^{(k)}+s_{k} z^{(k)}, z^{(k)}=-\nabla_{x} f\left(x^{(\omega)}\right)+t_{k} z^{(k-1)}, \quad t_{1}=0
$$

-W/ fixed paramelks converge linearly w/ optimal $C=1-\sigma\left(K(M)^{-1 / 2}\right)=1-O\left(K(A)^{-1}\right)$

$$
\text { (vs. } \left.6 . D: 1-\sigma\left(K_{(}(\mu)^{-1}\right)=1-\sigma\left(k(A)^{-2}\right)\right)
$$

- better, converge at square root of conditioning of M, conditioning of A
- still slow if very ill-conditioned... con we do better?
- But, the optimal momentum method w/ adoptive parameters converges in exactly n steps:
- how??
-given: $x^{(k+1)}=x^{(k)}+s_{k} z^{(k)}$

$$
z^{(k)}=-\nabla, f\left(x^{(k)}\right)+t_{k} z^{(k-1)}
$$

pick t_{k} sit. the sequence of search directions

$$
z^{(0)}=-\nabla_{x} f\left(x^{(0)}\right), z^{(1)}, z^{(2)}, \cdots
$$

are all "conjugate" $\left(L_{m}\right)$

- Def: given $H \in \mathbb{C}^{n \times n}$, Hemition, positive definite
then the product $\langle u, v\rangle_{m}=u^{\top} M v$
is an imerer product and induces a norm
on $\mathbb{C}^{n},\|u\|_{m}^{2}=\langle u, n\rangle_{m}=u^{\top} M_{u}$
- aim to work we conjugate search directions (1 under $\langle\cdot, \cdot\rangle_{m}$)
- note: con build a set of conjugate directions

$$
q_{1}, q_{2}, T_{3}, \cdots
$$

from a sequence of proposal directions

$$
\begin{aligned}
& v_{1}, v_{2}, v_{3}, \ldots \\
& \text { st. } \operatorname{span}\left(q_{1}, q_{2}, \ldots q_{k}\right)=\operatorname{span}\left(v_{1} \ldots v_{k}\right) \text { via Gram-Schmodt using }\langle\cdot, \cdot\rangle_{M} \\
& \cdot q_{k} \| \text { to } v_{k}-\sum_{j=1}^{k-1} \frac{\left\langle q_{1}, v_{k}\right\rangle_{m}}{\left\langle q_{J}, q_{j}\right\rangle_{m}} \\
& {\left[q_{J}\right.} \\
& \left\langle q_{1}, T_{j}\right\rangle_{m}=\left\|_{3}\right\|_{m}^{2}
\end{aligned}
$$

- the ensuing algarithon is the momentum method wo adoptive steps:

$$
\begin{aligned}
& x^{(k+1)}=x^{(k)}+s_{k} z^{(k)} \\
& z^{(k)}=-\nabla_{a} f\left(x^{(k)}\right)+\sum_{j<k} t_{k, j} z^{(j)}
\end{aligned}
$$

that minimizes the objective

$$
f\left(x^{(k)}\right)=\frac{1}{2}\left(x^{(4)}-x_{*}\right)^{\top} M\left(x^{* 2} x_{2}\right)=\frac{1}{2}\left\|A x^{(2)}-b\right\|^{2}+C
$$

over all possible choices of s, t for all $K \in[1, n]$.

- moreover, only uses $t_{k, k-1} \quad\left(t_{k, j}=0\right.$ if $\left.j<k-1\right)$
... only adjusts $\nabla_{a} f\left(x^{(k)}\right)$ by last search direction
- So, to derive, let's study the sequence of objective function values and choose sit to minimize the objective at each K...
- let $f(x)=\frac{1}{2}\left(x-x_{*}\right)^{\top} M\left(x-x_{+}\right)=\frac{1}{2}\|A x-6\|^{2}+C$
where $M=A^{*} A, x_{*}=\left(A^{*} A\right)^{-1} A^{*} b$

$$
\nabla_{x} f(x)=M\left(x-x_{*}\right)=A^{*} A x-A^{*} b
$$

- let's start w/ just Gradient Descant:

$$
\begin{aligned}
& x^{(0)} \\
& x^{(1)}=x^{(0)}-s_{0} \nabla_{a} f\left(x^{(0)}\right) \mapsto x^{(1)}=x^{(0)}-s_{0} M\left(x^{(0)}-x_{*}\right) \\
& I_{x^{(0)}=x^{(1)}-s_{1} \nabla_{x} f\left(x^{(1)}\right) \mapsto x^{(2)}=x^{(1)}-s_{1} M\left(x^{(1)}-x_{k}\right)}
\end{aligned}
$$

error: $y^{(k)}=x^{(k)}-x_{*}, \quad \nabla_{x} f\left(x^{(k)}\right)=M\left(x^{(k)}-x_{k}\right)=M y$

$$
y^{(1)}=x^{(1)}-x_{*}=\left(x^{(0)}-x_{k}\right)-s_{0} \nabla_{k} f\left(x^{(0)}\right) \mapsto x^{(1)}=\left(x^{(0)}-x_{*}\right)-s_{0} M\left(x^{(0)}-x_{k}\right)
$$

Conclusion: error at skep $K, y^{(k)}=x^{(k)}-x_{*}$
is a polynomial of degree K in M
w/ cocflicents determined by s_{0}, s_{1}, \ldots
limes $y^{(0)}=x^{(0)}-x$ *
$\left.\begin{array}{l}\cdot y^{(k+1)}=P_{k}(M / s) y^{(0)} \\ P_{k}(\xi \mid s)=\prod_{j=0}^{k}\left(1-s_{j} \xi\right)\end{array}\right\}$ when optimizing over $\quad \begin{aligned} & \text { the choice of } s\end{aligned}$
the goal is to moke $\left\|P_{k}(M \mid s)\right\|_{z}$ as small as passible

$$
\begin{aligned}
\left\|y^{(k)}\right\|_{2} & \leq\left\|\rho_{k}(m / s)\right\|_{2}\left\|y^{(0)}\right\|_{e} \\
& =\text { s } \lg ^{h t}
\end{aligned}
$$

$$
\begin{aligned}
& y^{(0)}=x^{(0)}-x_{k} \\
& y^{(1)}=y^{(0)}-s_{0} M y^{(0)}=\left(I-s_{0} M\right) y^{(0)} \\
& \begin{array}{l}
y^{(2)}=y^{(1)}-s_{1} M y^{(1)}=(I-s, M) y^{(1)} \\
y^{(2)}=\underbrace{\left[M^{0}-\left(s_{0}+s_{1}\right) M^{\prime}+s_{0} s_{1} M^{2}\right]}_{P_{2}(M \mid s)} y^{(0)}
\end{array} \\
& P_{z}(\xi \mid s)=\xi^{0}-\left(s_{0}+s_{1}\right) \xi^{\prime}+s_{0} s_{1} \xi^{2} \\
& y^{(k+1)}=y^{(k)}-s_{k} M_{\gamma}{ }^{(k)}=\left(I-s_{k} M\right) y^{(k)} \\
& =P_{K+1}(M \mid S) \gamma^{(0)}
\end{aligned}
$$

use momentum:

$$
\begin{aligned}
& y^{(k+1)}=y^{(k)}-s_{k} z^{(k)} \\
& z^{(k)}=\underbrace{-\nabla_{k} f\left(x^{(k)}\right)}_{M_{y}(k)}+\sum_{j<k} t_{k j} z^{(\jmath)}
\end{aligned}
$$

then: some polynomial degree K in M

$$
\begin{aligned}
y^{(k+1)}= & \rho_{k}(M \mid s, t) y^{(0)} \\
& \uparrow \\
& {\left[I+c_{1}(s, t) M+c_{2}(s, t) M^{2}+\ldots c_{k}(s, t) M^{k}\right] y^{(0)} }
\end{aligned}
$$

$$
\left.\hat{\tau}_{\text {always }} \text { Just } I \text { not } c_{0}(s, t) I \text { since } z^{(0)}=-\nabla_{x} \vec{f}_{x^{(0)}}\right)=M_{y}(0)
$$

$$
y^{(k+1)}=y^{1}(0)+c_{1}(s, t) M_{y}^{(0)}+c_{e}(s, t) M_{1}^{1} y^{(0)}+\ldots c_{k}(s, t) M_{y^{k}(0)}^{1}
$$

$$
=y^{(0)}+\left[\begin{array}{cccc}
1 & 1 & 1 \\
M_{y^{(0)}}^{(0)} & M^{2},(0) & \ldots & M^{k} y^{(0)} \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{c}
c_{1}(s, t) \\
c_{1}(s, 1) \\
\vdots \\
c_{k}(3,1)
\end{array}\right]
$$

1. wed like (eventually) $\left[n_{y}^{(0)} n_{1}^{2}(0) \ldots n^{k},(0)\right] \dot{c}(s, t)=-y^{(0)}$
for sone k
2.

$$
y^{(k+1)} \in y^{(0)}+\underbrace{\operatorname{span}\left\{M_{y^{(0)}}, M_{y^{2}}^{(0)}, \ldots M^{k} y^{(0)}\right\}}_{K_{k}\left(M, y^{(0)}\right)=" K_{\text {rylov }} \text { Subspace" }}
$$

- Fact: if M has n distinct eigenvalues, then
for almost any input vector $y^{(0)}$

$$
\operatorname{dim}\left(K_{k}\left(M, y^{(0)}\right)\right)=\min (k, n)
$$

then sike $M \in \mathbb{C}^{n \times n}, M_{y^{(0)}} \in \mathbb{C}^{1}$, so $K_{k}\left(M_{1} y^{(0)}\right) \in \mathbb{C}^{n}$
so, if $k ? n$

$$
\begin{gathered}
\left.K_{k}\left(M, y^{(0)}\right) \subseteq \mathbb{C}^{\bullet} \quad\right\} \text { for } K \geq n, K_{k}\left(M, y^{(0)}\right)=\mathbb{C}^{n} . \\
\operatorname{dim}\left(K_{k}(M, y(0))\right)=n
\end{gathered} \quad .
$$

. so, ... after n steps $K_{k}\left(M, y^{(0)}\right)=\mathbb{C}^{n}$
thus contains any vector in \mathbb{C}^{n}
in particular, it contains $-y^{(0)} \ldots$
then \exists a coefficient vector \vec{C} sat.

$$
y^{(n)}=y^{(0)}+\underbrace{\left[M_{y^{(0)}} m^{2} y^{(0)} \ldots M^{0} y^{(0)}\right]} \dot{c}=y^{(0)}-y^{(0)}=0 .
$$

$$
\text { i.e. } x^{(n)}=x_{*} \text {, solve in } n \text { steps. }
$$

thus, we hope to choose $s, t=-y^{(0)}$ s.t. after a skep the error $y^{(n)}=0$.

- Moral: $y^{(k)} \in y^{(0)}+K_{k}\left(M, y^{(0)}\right) \longleftarrow$ space of possible errors left over after K stops of a momentum method...
for k In it's possible to find $-y^{(0)} \in K_{k}\left(M, y^{(0)}\right)$
thus to solve the optimization problem exactly.
- Optimality for each stage K: momentum method w/ st is optimal if

$$
y^{(k+1)}=\underset{y \in y^{(0)}+K_{k}\left(M, y^{(0)}\right)}{\operatorname{argmin}}\{f(y)\}=\underset{y \in y^{(0)}+K_{k}\left(M, y^{(0)}\right)}{\operatorname{argmin}\left\{\frac{1}{2} y^{\top} M y\right\}}
$$

- given a conjugate basis for $K_{k}\left(M, y^{(0)}\right), Q^{(k)}=\left\{q^{(1)}, q^{(2)}, \ldots q^{(k)}\right\}$
it is possible to solve for $y^{(k+1)}$ exactly...
- Suppose $Q^{(k)}=\left\{q^{(1)}, \ldots q^{(k)}\right\}$ st. $\operatorname{spon}\left(Q^{(k)}\right)=K_{k}\left(M, y^{(0)}\right)$

$$
\text { and } q^{(i)} \perp_{m} q^{(j)} \text { if ifj}
$$

$$
\left.\begin{array}{l}
y^{(k+1)} \in y^{(0)}+K_{k}\left(M, y^{(0)}\right)=y^{(0)}+\sum_{j=1}^{k} \alpha_{j} q^{(j)} \\
y^{(0)} \in \mathbb{C}^{n}=K_{n}\left(M_{,}(0)\right)=\sum_{j=1}^{n} \beta_{j} q^{(j)}
\end{array}\right\} y^{(k+1)=\sum_{j=1}^{k}\left(\beta_{j}+\alpha_{j}\right) q^{(j)}+\sum_{j=k_{1}}^{n} \beta_{j} q^{(j)}}
$$

if the goal is to make $y^{(k+1)}$ as close to 0 as possible then, choose

$$
\alpha_{j}=-\beta_{\jmath} \ldots
$$

- Suggests an outline for a method:
run 60 + momentum w/ adaptive step sizes:

$$
x^{(k+1)}=x^{(k)}+s_{k} z^{(k)}, \quad z^{(k)}=-\nabla_{k} f\left(x^{(k)}\right)+\sum_{J<k} f_{k J} z^{(\rho)}
$$

where s and t are chosen sat. the errors satisfy

Thursday - 05/04/2023 - Conjugate Gradients and Power Iteration

- Logistics:
- Reading posted
- WW 4 due tonight
- HW 5 due next week
- Goals:
- Conjugate gradient descent
- Last Class: given $f(x)=\frac{1}{2}\left(x-x_{\star}\right)^{*} M\left(x-x_{\psi}\right)=\frac{1}{2}\|A x-b\|^{2}, A \in \mathbb{C}^{m \times n}$ full rook M hermitian positive definite
where $M=A^{k} A, x_{\uparrow}=\left(A^{*} A\right)^{-1} A^{k} b$
naknown
then on ikrative momentum-based method sets:

$$
x^{(k+1)}=x^{(k)}+S_{k} z^{(k)} \text { where } z^{(k)}=\overbrace{-\nabla_{k} f\left(x^{(k)}\right)}^{-M\left(k-x_{k}\right)}+\sum_{j<k} t_{k j} z^{(j)}
$$

(includes all 6D methorts by setting $t_{k j}=0 \forall j<k$)
has errors: $y^{(k)}=x^{(k)}-x_{k}, \quad\left(f(y)=\frac{1}{\varepsilon} y^{*} M_{y}, \quad \nabla_{y} f(y)=M_{y}\right)$ contained in the sequence of affine subspores: is the $k^{\text {th }}$ Kylov subspace.

- Fact: if M has n distinct eigenvalues, then, for almost any $y^{(0)}$ $K_{n}\left(M, y^{(0)}\right)=\mathbb{C}^{n}$ so $y^{(0)} \in K_{n}\left(M, y^{(0)}\right)$ and, for all $y^{(0)}, y^{(0)} \in K_{K}\left(M, y^{(0)}\right)$ for some $K \leq n$.
- then, any momentum method satisfies:

$$
f\left(y^{(k)}\right) \geq \underset{y \in y^{(0)}+K_{k}\left(M, y^{(0)}\right)}{\operatorname{argmin}}\{f(y)\}
$$

and the best possible momentum method would set:

$$
y^{(k)}=\operatorname{argmin}\{f(y)\} \text { thus would achieve } y^{(k)}=0 \Rightarrow x^{(k)}=x_{*}
$$ simple eigenvalues).

- So, our target is to set/solve:
$y^{(k)}=\operatorname{argmin}\{f(y)\}$ in an iterative fashion (must achieve implicitly $y \in y^{(0)}+K_{k}\left(M, y^{(0)}\right)$ via careful choice of s and t)
- write: $y^{(k)}=y^{(0)}+\left[\begin{array}{ccc}1 \\ M_{y}^{(0)}, & M^{2} y^{(0)}, \ldots & M^{k} y^{(0)} \\ 1 & 1\end{array}\right] \vec{C}$
and try to solve for the coefficients $\overrightarrow{\boldsymbol{c}} . .$.
- Problem: The basis $B^{(k)}=\left\{M_{y}^{(0)}\right\}_{j=1}^{k}$ is extremely ill-conditioned...
why? if $M=V \Lambda V^{*}$, where $A=\cup \Sigma V^{*}, \Lambda=\varepsilon^{*} \Sigma$
then $v^{*}=v^{-1}$ so:

$$
\begin{aligned}
M^{J} & =(V \Lambda \overbrace{\left.V^{*}\right)\left(V \Lambda V^{*}\right)(V \Lambda}^{I} \overbrace{\left.V^{*}\right) V}^{I} \overbrace{V^{*}\left(V \Lambda V^{*}\right)}^{I} \\
& =V \Lambda^{J} V^{*}=V \operatorname{diog}\left(\lambda_{1}{ }^{\prime}, \lambda_{2}{ }^{\prime}, \ldots \lambda_{n}^{J}\right) V^{*}=\sum_{i=1}^{\hat{\sum} \lambda_{i}^{J}\left[v_{i} V_{i}{ }^{*}\right]} \\
\text { so } \quad M^{J} y^{(0)} & =V \Lambda^{\prime} V^{*} y=\sum_{i=1}^{n}\left(\lambda_{i}^{J}\left(v_{i}{ }^{*} y^{(0)}\right)\right) V_{i}^{\prime}
\end{aligned}
$$

$\{$ magnitude will either \nearrow to ∞

$$
\left.\left|\lambda_{1}\right|>\left|\lambda_{i}\right| \forall i>1 \quad \text { so: } \quad \text { if } \lambda_{1}>1, \text { or }\right\rangle 0 \text { if } \lambda_{1}<1 \ldots
$$

$$
\frac{1}{\lambda_{1}}, M^{\prime} y^{(0)}=\left(v_{1}^{*} y^{(0)}\right) v_{1}^{1}+\sum_{i>1}^{\sum} \underbrace{\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{j}\left(v_{i}^{*} y^{(0)}\right) v_{i}^{\prime}}_{<1}
$$

so: $\frac{1}{\lambda_{1}} M^{\prime} y^{(0)}$ converges to $\left(v_{1}^{*} y^{(0)}\right) v_{1}$ at $\theta\left(\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{J}\right)$
thus: as $J \rightarrow$ large, the columns of $M_{y}^{\prime}(0)$ become \sim parallel)

- so, need a better basis for $K_{k}\left(M_{1} y^{(0)}\right) \ldots$
-idea: leverage orthogonality... really, conjugacy (orthogonality w.r.t. M)
-recall: Def: gums $M \in \mathbb{C}^{\text {nan }}$, Hemition, positive definite then the protect $\langle u, v\rangle_{m}=u^{\top} M_{v}$
is an mere product and indues a now
on $\mathbb{C}^{1},\|u\|_{m}^{2}=\langle n, n\rangle_{m}=u^{\top} M_{n}$
- Let $Q^{(k)}=\left[q^{(1)}, q^{(2)}, \ldots q^{(k)}\right]$ be an \perp_{M} basis for $K_{K}\left(M, y^{(0)}\right)$
(recall, can build by applying 6.5. to any sequence of
proposal directions: $v^{(1)}, v^{(2)}, \ldots$ st.

$$
\operatorname{span}\left(\left\{v^{(j)} \xi_{j=1}^{k}\right)=K_{K}\left(M, y^{(0)}\right)=\operatorname{span}\left(\left\{M_{y}^{\lrcorner}{ }^{(0)}\right\}_{j=1}^{K}\right) \ldots \text { Ex: let } v^{(s)}=M_{y^{(0)}}^{\lrcorner}\right. \text {) }
$$

then:

- Then: 1. Conjugacy: $q^{(i)} \perp_{M} q^{(j)} \forall i \neq j$ so $\left\langle q^{(j)}, q^{(j)}\right\rangle_{M}=q^{(i)^{*}} M_{q}(j)=0$

2. Change of Basis: if $w \in K_{K}\left(M, y^{(\omega)}\right)$ for some k then \exists coefficient's

$$
\begin{aligned}
& \hat{w}=\left[\hat{w}_{1}, \hat{w}_{2}, \ldots \hat{w}_{k}\right] \text { sit. } \\
& w=Q^{(k)} \hat{w}=\sum_{j=1}^{k} \hat{w}_{j}^{\prime} q_{1}^{(s)} \\
& \text { and, } \forall w \in K_{k}\left(M, y^{(0)}\right), w=Q^{(k)} \hat{w}
\end{aligned}
$$

we con recover \hat{w} from w via inner-products:

$$
\begin{aligned}
& \hat{w}_{j} \propto\left\langle q^{(j)}, w\right\rangle_{M}=\left\langle q^{(j)}, Q^{(k)} \hat{w}\right\rangle_{m}=\left\langle q^{(j)}, \sum_{i=1}^{k} \hat{w}_{i} q^{(i)}\right\rangle_{m} \\
& =\sum_{i=1}^{k} \hat{w}_{i} \underbrace{\left\langle q^{(s)}, q^{(0)}\right\rangle}_{=0 \text { eaves } i=j}=\hat{w}_{J}\left\langle q^{(s)}, q^{(1)}\right\rangle_{m}=\left\|q^{(5)}\right\|_{m}^{2} \hat{w}_{J} \\
& \text { so: } \quad \hat{w}_{J}=\frac{1}{\|q(3)\|_{m}^{2}}\left\langle q^{(j)}, w\right\rangle_{m}=\frac{q\left(s^{*} M_{w}\right.}{q^{\left(s^{2}\right.} M_{q}(j)}
\end{aligned}
$$

then: $y^{(k)}=y^{(0)}+\sum_{j=1}^{k} \hat{y}_{j}^{(\omega)}(s, t) q^{\prime \prime s}$ for some \hat{y}_{j} determined $b_{y}=$ and t
and: $y^{(0)}=\sum_{j=1}^{n} \hat{y}_{j}^{(0)} q^{\prime}(s)$ where $\hat{y}_{J}^{(0)}=\frac{1}{\left\|q^{(j)}\right\|_{m}^{2}}\left\langle q^{(s)}, y^{(0)}\right\rangle_{m}$
3. Objective: $f(w)=\frac{1}{2} w^{*} M_{w}$
if $w=Q^{(k)} \hat{w}$ then:

$$
\begin{aligned}
&\left.\begin{array}{rl}
f(\omega) & =\frac{1}{2}\left(Q^{(k)} \hat{w}\right)^{*} M\left(Q^{(k)} \hat{\omega}\right) \\
& =\frac{1}{2}\left(\sum_{j=1}^{k} \hat{\omega}_{J} q^{(j)}\right)^{*} M\left(\sum_{i=1}^{k} \hat{w}_{i} q^{(i)}\right)
\end{array}\right)=\frac{1}{2} \sum_{i, j=1}^{k} \overline{\hat{w}}_{j} \hat{w}_{i}\left(q^{(j)} M_{q^{(j)}}\right) \\
&=\frac{1}{2} \sum_{i j=1}^{k} \hat{w}_{j} \hat{w}_{i} \underbrace{\left\langle q^{(j)}, q^{(i)}\right\rangle_{M}}_{=0 \text { inks is }}=\frac{1}{2} \sum_{j=1}^{k}\left\|q^{(j)}\right\|_{M}^{2}\left|\hat{w}_{j}\right|^{2}
\end{aligned}
$$

$$
\text { .set } q(j) \text { st. }\|q(1)\|^{2}=1
$$

then:

$$
\begin{aligned}
f(w)= & \frac{1}{2} \sum_{j=1}^{k}\left|\hat{w}_{j}\right|^{2}=\frac{1}{2}\|\hat{w}\|^{2} \\
\text { - so: } f\left(y^{(k)}\right) & =f\left(y^{(0)}+\sum_{j=1}^{k} i_{j}^{(k)} q^{(j)}\right) \\
= & f\left(\sum_{j=1}^{\hat{j}} \hat{y}_{j}^{(0)} q^{(j)}+\ldots\right)=f\left(\sum_{j=1}^{k}\left(\hat{y}_{j}^{(0)}+\hat{j}_{j}^{(k)}\right) q^{(j)}+\sum_{j=k+1} \hat{y}_{j}^{(0)} q^{(j)}\right) \\
& =\frac{1}{2}\left(\sum_{j=1}^{k}\left|\hat{j}_{j}^{(0)}+\hat{y}_{j}^{(1)}\right|^{2}+\sum_{j>k}\left|\hat{i}_{j}^{(0)}\right|^{2}\right)
\end{aligned}
$$

- so: $\underset{y \in y^{\prime \prime}+K\left(Y, y^{(w)}\right)}{\operatorname{argmin}}(f(y))$ is achene by setting:

$$
y_{\in y^{\prime \prime \prime}+}+K_{k}\left(\eta_{1}, y^{\prime \prime \prime}\right)
$$

$$
\left.\hat{y}_{j}=-\hat{y}_{j}^{(0)} \text { for all }\right\lrcorner \leq k
$$

- aim to choose sit such that:

$$
\hat{y}_{j}^{(k)}(s, t)=\cdot \hat{y}_{j}^{(0)}
$$

then:

$$
-=\left\langle 9^{(2)}, y^{(0)}\right\rangle_{m}
$$

solve in finely many steps.
4. Iteration: $y^{(k)}=y^{(0)}-\sum_{j=1}^{k} \hat{y}_{j}^{(0)} q^{(j)}=\sum_{j=1}^{\hat{y}} \hat{y}_{j}^{(0)} q^{(j)}-\sum_{j=1}^{k} \hat{y}_{j}^{(0)} q^{(j)}=\sum_{j>K} \hat{y}_{j}^{(0)} q^{(j)}$

$$
\begin{aligned}
& =y^{(k-1)}-\hat{y}_{k}^{(0)} q^{(k)}=y^{(k-1)}-\underbrace{\left\langle q^{(k)} y^{(0)}\right\rangle_{M} q^{(k)}=y^{(k-1)}-\left\langle q^{(k)}, y^{(k-1)}\right\rangle_{M} q^{(k)}, ~} \\
& =\left\langle q^{(k)}, y^{(k-1)}\right\rangle_{m} \text { since } y^{(k-1)}=\sum_{j=k} \eta_{j}^{(0)} q^{(1)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { so: }: x^{(k)}=x^{(k-1)}-\left(q^{(k))^{*}} M\left(x^{(k-1)}-x_{\alpha}\right)\right) q^{(k)} \\
& =x^{(k-1)}-(q^{\left.(n)^{*}\right)} \underbrace{\left(x^{*}\right)}_{\nabla_{x} f\left(A_{x}^{(k+1)}\right)}
\end{aligned}
$$

- So, practical iteration rule:
given $A, b \Rightarrow M=A^{*} A$,
$\nabla_{x} f(x)=M_{x}-A^{*} b \longleftarrow$ "residual"
given $x^{(k)}$ iterate: $\nabla_{x} f\left(x^{(k)}\right)=M_{x}^{(k)}-A^{*} b=r^{(k)}$

$$
x^{(k+1)}=x^{(k)}+s_{k} z^{(k)}
$$

where:

1. search direction: $z^{(k)}=-q^{(k)} \longleftarrow K^{\text {th }}$ conjugate basis vectors of $K_{k}\left(M, y^{(0)}\right)$
2. step size: $s_{k}=\left\langle q^{(k)}, \nabla_{x} f\left(x^{(k)}\right)\right\rangle=q^{(k)^{*}}\left(M_{x}^{(k)} \cdot A^{*}\right)=q^{(k)^{*}} r^{(k)}$
.if $q^{\prime} s$ are not normalized, residual $r^{(k)}$, notice: $x^{(k)}=x^{(k-1)} s_{k-1} q^{(k-1)}$

$$
s_{k}=\left(q^{\left.(k)^{*} r^{(k)}\right) /\left(q^{(k)^{*}} M_{q^{(k)}}^{(k)}\right) .}\right.
$$

[- Substituting in for the residual:
at stage $k \Rightarrow$ have $x^{(k)}, p^{(k-1)}, s_{k-1}$

- introduce $z^{(k)}=q^{(k)} \longleftarrow$ don't know how yet
(i) compute $M_{q}{ }^{(k)}$
(ii) compute $r^{(k)}=r^{(k-1)}-s_{k-1}\left(M_{q}^{(k)}\right)=\nabla_{x} f\left(x^{(k)}\right)$
(iii) compute:

$$
s_{k}=\left\langle q^{(k)}, r^{(k)}\right\rangle /\left\|q^{(k)}\right\|_{m}^{2}=\frac{q^{(k)^{*}}(k)}{q^{(k)^{*}}\left(M_{q}(k)\right.}
$$

(iv) update:

$$
x^{(k+1)}=x^{(k)}-s_{k} q^{(k)}
$$

- almost a full algorithm...
haven't specified how to compute the conjugate search directions $9^{(k)} \ldots$
- recall: given $Q^{(k-1)}=\left\{q^{(j)}\right\}_{j=1}^{k-1}$ we only need
a proposal direction $v^{(k)}$ with a nonzero
projection onto K_{k} / K_{k-1} i.e. onto $M_{y}{ }^{(0)}$
- from GD/momentum: propose $v^{(k)}=\nabla_{x} f\left(x^{(k-1)}\right)=r^{(k-1)}=M_{y}^{(k-1)}$
some polynomial order $K-1$ in M
we've already shown that: $y^{(k-1)}={\underset{p}{k-1}(M \mid s, t)}_{\left.y^{(0)}+y^{(0)}\right) ~}^{\text {(}}$
so:

$$
M_{y}^{(k)}=M_{y}^{(0)}+M_{P_{k}=1}(M \mid s, t) y_{y}^{(0)}=\text { some polynomial order } K \text { in } M
$$

so: $v^{(k)}=\nabla_{k} f\left(x^{(k-1)}\right)=r^{(k-1)} \in K_{k}\left(M, y^{(0)}\right) / K_{k-1}\left(H, y^{(0)}\right)$

- then, or thogonalize:

$$
\underbrace{q^{(k)}}_{z^{(k)}}=\overbrace{v^{(k)}}^{\nabla_{n} f\left(x^{(k)}\right)}-\sum_{j<k} \underbrace{\left\langle q^{(j)}, v^{(k)} q_{m}^{(j)}, q^{(j)}\right\rangle_{m}}_{f_{k j}} q^{(j)}
$$

but $v^{(k)}=\nabla_{x} f\left(x^{(k-1)}\right)=r^{(k-1)}=M_{y}^{(k-1)}$

$$
\text { and } y^{(k-1)}=\sum_{i=k}^{n} \hat{y}_{i}^{(0)} g^{(i)}
$$

$$
\text { so }\left\langle q^{(1)}, v^{(k)}\right\rangle_{M}=\left\langle q(1), M_{y}{ }^{(k-1)}\right\rangle_{M}=\left\langle M_{q}(1), \sum_{i=k}^{n} \hat{y}_{i}^{(0)} q^{(1)}\right\rangle_{M}
$$

$$
\text { so } \prod_{j<k, j \leq k-1} \quad \quad_{m}(j) \in K_{j+1} \text { to } \sum_{i=K}^{n} \hat{y}_{i}^{(0)} q^{(i)}
$$

unless $\mathrm{J}=\mathrm{k}-1 \ldots$
so $\left\langle q^{(j)}, v^{(k)}\right\rangle_{M}=0$ unless $j=k-1$!

$$
f_{k j}=0 \text { unless } j=k-1 \text { ! }
$$

so:

$$
q^{(k)}=\overbrace{v^{(k)}}^{\nabla_{0} f\left(x^{(k)}\right)}-\sum_{j\langle k} \frac{\underbrace{\left\langle(j), v^{(k)}\right\rangle_{m}}}{\left\langle q^{(j)}, q^{(j)}\right\rangle_{m}} q^{(\jmath)}=v^{(k)}-\frac{\left\langle q^{(k-1)}, v^{(k)}\right\rangle_{m}}{\left\langle q^{(k-1)}, q^{(k-1)}\right\rangle_{M}} q^{(k-1)}
$$

$$
t_{k j} \quad=\nabla_{x} f\left(x^{(k)}\right)-t_{k, k-1} z^{(k-1)} \leftarrow 1 \text {-step momentum inkle! }
$$

[-Conjugate Gradient Descant:

- input $A, b, x^{(0)}$
- compute $A x^{(0)}-b \Rightarrow r^{(0)}=A^{*}\left(A_{x-b}\right)$
- compare $M=A^{*} A$
- Let $g^{(0)}=0, s_{0}=0$
- iterate over $k \Rightarrow$ have $x^{(k)}, p^{(k-1)}, s_{k-1}$
$\left.\begin{array}{l}\text { (i) compute }\left\langle q^{(k-1)}, r^{(k-1)}\right\rangle_{m} /\left\|q^{(k-1)}\right\|_{n}^{2} \\ \text { (ii) let } q^{(k)}=r^{(k-1\rangle}-\langle\ldots\rangle / 1 \ldots .11 q^{(k-1)}\end{array}\right\}$ orthogonalize
(ii) compute $M_{q}{ }^{(k)}$
(iv) compute $r^{(k)}=r^{(k-1)}-s_{k-1}\left(M_{q}^{(k)}\right)=\nabla_{k} f\left(x^{(k)}\right)$
(v) compute:

$$
\left.s_{k}=\left\langle q^{(k)}, r^{(k)}\right\rangle /\left\|q^{(k)}\right\|_{M}^{2}=\frac{q^{(k)^{*}}(k)}{q^{(k)^{k}}\left(M_{q}(k)\right.}\right)
$$

(vi) update:

$$
x^{(k+1)}=x^{(k)}-s_{k} q^{(k)}
$$

Week 8 - Spectral (Eigenvalue) Problems

Tuesday - May $9^{\text {th }}$

- Logistics:
- HW 5 due Thursday
- Project 2 post this week
- Reading posted
- Goals:
- Eigenvalue and SVD problems:
- Characteristic polynomial \leftarrow avoid, extremely unstable
- Complexity
- Methods:
- Tools: Matrix Powers B Rayleigh Quotients
- Power Iteration
- Inverse Iteration
- Rayleigh Quotient ideation
- Spectral Problems:

1. suppose $A \in \mathbb{C}^{n \times n}$ then on eigenpoir of $A,(v, 1)$
s. 1.

$$
A_{v}=\lambda_{v}
$$

and, if A admits a lineally ind regenerator
$V=\left[\begin{array}{lll}i, v_{c} & i_{n} \\ 1 & 1\end{array}\right]$ then:

$$
\begin{aligned}
& A V=V \Lambda, \quad \Lambda=\operatorname{dog}\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{1}\right) \\
& A=V \Lambda V^{-1} .
\end{aligned}
$$

-eiganoline problem \Rightarrow extract some subset of the eigarpars

$$
\left(\lambda_{1}, v_{J}\right)
$$

-... deampsition \Rightarrow reaver all $\left(\lambda_{\lrcorner}, v_{\jmath}\right.$ if $J=1, \ldots n$.
2. Singular value problems: given any $\left.A \in C^{m \times A}\right]$ a SVD of A

- $A=U \& V^{*}$ whee U, V ore milan and \mathcal{E} is diagonal, rall, nomegtive
- recourse the singular values lvectivs: $\left(\sigma, u_{j}, v\right)$
- Convening SVD to eigenvalue...
- given $A \in C^{-\times n} \ldots$
-idea: compute: $M=A^{*} A$, given $A=U \& V^{*}$

$$
M=V \varepsilon^{*} \underbrace{u^{*}}_{I} u^{u} \varepsilon v^{*}=V\left(\varepsilon^{*} \varepsilon\right) v_{\substack{\uparrow \\=V^{-1}}}^{*}=V\left(\varepsilon^{*} \varepsilon\right) v^{-1}
$$

so eigenvectors of M : $v_{\jmath}(M)=v_{\jmath}(A)$
eigenvalues of $M: \lambda_{j}(M)=\sigma_{j}^{2}(A)$
or, compute: $M=A A^{*}$, then...
eigenvectors of $M: v(M)=u_{j}(A)$
eigenvalues of $M: \lambda_{\rho}(M)=\sigma_{\rho}^{2}(A)$
usually avoid... squares the conditioning
-idea: build $H=\left[\begin{array}{ll}0 & A^{\star} \\ A & 0\end{array}\right]$, notice H is hermitian, $(m+n) \times(m+m)$
then, the eigenvalues vectors of $H \Leftrightarrow$ the SVD of A

$$
H\left[\begin{array}{cc}
v & v \\
\hdashline u & -u
\end{array}\right]=\left[\begin{array}{cc}
v & v \\
\hdashline u & -v
\end{array}\right]\left[\begin{array}{cc}
\varepsilon & 0 \\
0 & -\varepsilon
\end{array}\right]
$$

the eigenvectors of H, col's of I
have as blocks the singular vectors of A
and the eigenvalues of H are (in mognitrode) the singular values of A.

- this is stable...
so, if we can find eigenvalue decomp \Rightarrow perform an SVD.
- Problem: given $A \in \mathbb{C}^{n \times n}$ how to find eigenpaiis $\left(v_{j}, \lambda_{j}\right)$?
- Finding eigenpairs:
- standard story: $A_{v}=\lambda v \Rightarrow A_{v}-\lambda v=0 \Rightarrow(A-\lambda I) v=0$
this means null $(A-\lambda I)$ is nonempty
so

$$
(A-\lambda I) \text { is noninvertible } \Leftrightarrow \underbrace{\operatorname{det}(A-\lambda I)}_{\text {polynomial! }}=0
$$

- the eigenvalues λ_{J} are the roots of the characteristic polynomial:

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

- then $v_{\jmath} \in \operatorname{null}\left(A-\lambda_{\jmath} I\right)$
- there is no analytic formula for the roots if $n>5$ - if $n>5$ then there cannot
- maybe find the roots numerically... be a direct method...
but, if A is $1 \times n$ then pa) degree n
roots of an $n^{\text {th }}$ degree polynomial
are extremely sensitive to its coefficients
- root finding for large n is extremely ill-conditioned
- Tools:

1. Powers of Matrices:

- a matrix power, A^{k} for $k \in \mathbb{Z} \leftarrow$ integer is A times itself k times
-Ex: $A^{\prime}, A^{2}=A A, A^{3}=A A A, \cdots G_{\text {arise natwolly }}$ in dynamical systems $\$$ numerical methods.
if A is diojonolizable let's thy converting into the cigenbosis, think about $A=V \Lambda v^{-1}$
then: 1. $A^{2}=A A=\left(v \Delta v^{-1}\right)\left(v \wedge v^{-1}\right)$

$$
\begin{aligned}
& =V \Lambda \underbrace{v^{-1} V \Lambda v^{-1}}_{I} \\
& =v \Lambda \Lambda v^{-1}=V \Lambda^{2} V^{-1} \\
& \uparrow \\
& A^{2}=V \Lambda^{2} V^{-1} \quad \operatorname{diog}\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots \lambda_{n}^{2}\right) \\
& \left.\Lambda_{\text {eigenvalues of }} A^{2} \text {, (eigenvalues of } A\right)^{2} \\
& A^{3}=A A^{2}=\left(v \Lambda v^{-1}\right)\left(v \Lambda^{2} v^{-1}\right) \\
& =V \Lambda \underbrace{v^{-1} v}_{I} \Lambda^{2} v^{-1}=V \Lambda^{3} v^{-1} \\
& A^{3}=v \Lambda^{3} v^{-1}
\end{aligned}
$$

2.

$\tau_{\text {eigenvalues of }} A^{3}$, (eigenvalues of $\left.A\right)^{3}$
K. $A^{k}=V \Lambda^{k} v^{-1}$

$$
\operatorname{diog}^{\uparrow}\left(\lambda_{1}{ }^{k}, \lambda_{2}{ }^{k}, \ldots \lambda_{n}{ }^{k}\right)
$$

this leads to the power method for computing eigenvalues and eigenvectors

- the power method: idea, start w/ an initial vector x_{0}
then compute $x_{1}=A x_{0}$

$$
\left.\begin{array}{c}
x_{1}=A x_{0} \\
x_{2}=A^{2} x_{0}=A x_{1} \\
x_{3}=A^{3} x_{0}=A x_{2} \\
\vdots \\
\vdots \\
x_{k}=A^{k} x_{0}=A x_{k-1}
\end{array}\right\}
$$

recessively compute powers

$$
v=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \lambda_{1}=2, \quad \lambda_{2}=1 / 2
$$

$\ldots A^{k} \times$ converges to a vector parallel to v_{1} and grows $\propto \lambda_{1}{ }^{k}$
to avoid x_{k} diverging to ∞ as $k \rightarrow \infty \quad($ largest $\lambda>1)$

$$
\text { or converging to } 0 \quad \text { (largest } \lambda<1 \text {) }
$$

normalize at each iteration:

$$
\begin{aligned}
& w=A x_{k} \\
& x_{k+1}=\frac{1}{\|w\|} w \sum^{\text {apply } A}
\end{aligned}
$$

$K^{\text {th }}$ step:

- this idea leads to a practical numerical algorithm for computing eigenvalues and eigenvectors, works for large n, does not require finding roots of a high degree polynomial, much more stable than characteristic polynomial...
- why? b/c the algorithm is inspired by the actual utility of the decomposition.

2. Rayleigh $Q_{\text {notients }}$:

- how con we estimate eigenvalues from estimated eigenvector?
- Suppose $v \in \mathbb{C}^{n}$ is \sim an eigenvector
then, want to find a scalar a st.

$$
A v \approx \alpha v
$$

optimize α :

$$
\alpha_{*}=\operatorname{argmin}\left\{\|A v-\alpha v\|^{2}\right\}=\operatorname{argmin}\{\underbrace{v^{*} A^{*} A v-2 \alpha v^{*} A v+\alpha^{2} v^{*} v}_{f(\alpha)}\}
$$

to minimize: $\partial_{\alpha} f(a)=-2 v^{*} A v+2 \alpha v^{*} v=0$ requires: $\alpha_{k}=\frac{v^{*} A v}{v^{*} v}$

- Def: the Rayleigh $Q_{\text {notient }} r(A, v)=\frac{v^{*} A v}{v^{*} v}$
(is the meanest approximation to an eigenvalue
of A given approximate eigenvector v)
$\left.\begin{array}{r}\text { - Facts: I. if } v \text { is an eigenvector of } A \text { w/ eigenvalue } \\ \lambda \text { then: } \\ \qquad(A, v)=\frac{v^{*} A v}{v^{*} v}=\frac{v^{*} \lambda v}{v^{*} v}=\lambda \frac{\|v\|^{2}}{\|v\|^{2}}=\lambda .\end{array}\right\} \begin{aligned} & \begin{array}{l}\text { Rayleigh quotient of an } \\ \text { eigenvector, retains an } \\ \text { eigenvalue! }\end{array}\end{aligned}$

2. if v is an eigenvector with eigenvalue λ
then, given $v^{\prime}=v+\delta v: \quad \delta v=v^{\prime}-v$

$$
r\left(A, v^{\prime}\right)=\lambda+\theta\left(\|\delta v\|^{2}\right) \longleftarrow r\left(A, v^{\prime}\right)-r(A, v)=\sigma\left(\left\|v^{\prime}-v\right\|^{2}\right)
$$

as $\|\delta v\| \rightarrow 0$.
quadratically accurate!
(why? because $\left.\nabla_{x} r(A, x)\right|_{k=v}=\left.\frac{2}{x^{*} x}\left(A_{k}-r(A, x) x\right)\right|_{x=v}=\frac{2}{v^{*} v}(A v-\lambda v)=0$

- put these ideas together to derive iterative methods for approximating eigenvalues and eigenvectors...
- Iterative Methods: Assume $A \in \mathbb{C}^{n \times n}$, hermitian (hence diagonalizoble), with simple (non-repeated) eigenvalues

1. The Power Method:
2. input $A, v^{(0)} w /\left\|v^{(0)}\right\|_{2}=1$
3. iterate until stopping
(i) $w=A_{v}{ }^{(k-1)}$

- apply $A\left(A^{k-1} \rightarrow A^{k}\right)$
(ii) $v^{(k)}=w /\|w\|$
- normalize \rightarrow estimate eigenvector
(iii) $\lambda^{(k)}=r\left(A, v^{(k)}\right)=v^{(k)^{*}}\left(A v^{(k)}\right)$. estimate eigenvalue
unlike the characteristic polmomiol
find z eigenvectors first
uses nollwol properties of eiganomes/vectws in officious, implencitation,
store for neat skep

$$
\int_{\substack{\text { fist now of } \\ L^{-1} \\ v^{-1} \\ \text { is }}} \text { vol not }
$$

- Convergence: Suppose $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{i}\right|>0 \quad \forall$ i> 1 and $y_{1}=\left[V_{v}^{-1}(0)\right]_{1} \neq 0$
then:

$$
\left\|v^{(k)}-\left(\pm v_{1}\right)\right\|=\sigma\left(\left(\frac{\lambda_{2}!}{\left(\lambda_{1}\right)}\right)^{k}\right) \text { and }\left|\lambda^{(k)}-\lambda_{1}\right|=\theta\left(\left(\frac{\lambda_{2}+1}{\lambda_{1} 1}\right)^{2 k}\right)
$$

$\left(v^{(k)} \rightarrow v_{1}, \lambda^{(k)} \rightarrow \lambda_{1}\right.$ geometrically at rakes $\lambda_{2} 1 / \lambda_{1} 1$ and $\left(\lambda_{2} 1 / \lambda_{1}, 1\right)^{2}$ errors converge linearly, $\left\|_{v}(k)-(\pm v),\right\| \leq C_{k}\left\|_{v}(k-1)-(\pm v),\right\|$ or $\left.C_{k} \rightarrow A_{c} 11_{1}, 1\right)$

- so, $\left|A_{2}\right| / 1 \lambda_{1} \mid=$ ratio of legist eigenvalues determines the convergence rate...
- Why?

$$
\begin{aligned}
& \begin{aligned}
& \text { recall: }: A_{x}^{k} \\
& \\
& v^{(k)} \propto V A^{k}(0)
\end{aligned} \\
& v^{(k)} \propto A^{k},(0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { at makes (} \Delta_{2} / \text {) }
\end{aligned}
$$

- Problems: 1. converges slowly if $\left|\lambda_{2}\right| \approx\left|\lambda_{1}\right|$

2. only finds $\left(v_{1}, \lambda_{1}\right)$, the largest eigenpoir...

- Q: how can we find a specific eigenpair?
-idea: matrix functions... if $f(x)$ is an analytic function $\mathbb{C} \rightarrow \mathbb{C}$
s. 1 .

$$
f(x)=\sum_{j=0}^{\infty} \alpha_{j} x^{J} \quad \text { (power series) }
$$

then

$$
f(A) \equiv \sum_{J=0}^{\infty} \alpha_{j} A^{J}
$$

if A is diagonalizable then $A=V \Lambda V^{-1}, A^{J}=V \Lambda^{J} V^{-1}$
so:

$$
\begin{aligned}
f(A) & =\sum_{J=0}^{\infty} \alpha_{J} V \Lambda^{J} V^{-1}=V\left[\sum_{j=0}^{\infty} \alpha_{j} \Lambda^{J}\right] V^{-1}=V f(\Lambda) V^{-1} \\
& =V \operatorname{dig}\left(f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots f\left(\lambda_{n}\right)\right) V^{-1}
\end{aligned}
$$

- pick f to highlight a particular eigenvalue
- Ex: $f(x)=(x-\mu)^{-1}$ for some $\mu \in \mathbb{C}$
then:

$$
\begin{aligned}
f(A) & =V \operatorname{diog}\left(\left(\lambda_{1}-\mu\right)^{-1}\left(\lambda_{2}-m\right)^{-1}, \ldots\left(\lambda_{n}-m\right)^{-1}\right) V^{-1} \\
& =\left[V \operatorname{diog}\left(\lambda_{1}-\mu, \lambda_{2}-m, \ldots \lambda_{n}-m\right) V^{-1}\right]^{-1} \\
& =\left[V(\Lambda-m I) V^{-1}\right]^{-1} \\
& =\left[V \Lambda V^{-1}-\mu I\right]^{-1} \\
& =[A-m I]^{-1}
\end{aligned}
$$

then:
$(A-n I)^{-1}$ has eigenvalues $\frac{1}{(\lambda,-\mu)}$ provided $\mu \neq \lambda_{\jmath} \forall \jmath$
so, $A-\mu I$ is invertible if $\mu \neq \lambda_{\jmath} \forall \jmath$
and

$$
\max _{J}\left\{\left|\lambda_{j}\left((A-m I)^{-1}\right)\right|\right\}=\max _{J}\left\{\frac{1}{\left|\left(\lambda_{\jmath}(A)-m\right)\right|}\right\}=(\min _{J}\{\underbrace{\left.\left.\left|\lambda_{j}(A)-m\right|\right\}\right)^{-1}}_{\text {eigenvalue closet to }}
$$

- notice, we con apply power iteration to $(A-M I)^{-1}$
by implicitly multiplying by $(A-\mu I)^{-1}$... ie. solving

$$
\begin{aligned}
(A-\mu I) v^{(k)} & \propto v^{(k-1)} \\
& \Downarrow \text { implies } \\
v^{(k)} \propto & (A-\mu I)^{-1} v^{(k-1)}
\end{aligned}
$$

... leads to inverse iteration
2. Inverse Iteration:

1. input $A, v^{(0)} w /\left\|v^{(0)}\right\|_{2}=1, M \leftarrow$ guess at desired eigenvalue
2. iterate until stopping

* (i) solve $(A-m I) w=v^{(k-1)} \quad$ apply $(A-m I)^{-1}$... raise the power
(ii) $v^{(k)}=w /\|w\| \quad$ - normalize \rightarrow estimate eigenvector
(iii) $\lambda^{(k)}=r\left(A_{j} v^{(k)}\right)=v^{(k)^{*}}\left(A_{v}{ }^{(k)}\right)$. estimate eigenvalue
* (i) is expensive, cost of solving linear system against ($A-m I$)
... but, if reduce $A-m I \rightarrow L U$ or $R^{*} R$ (cost: $\theta\left(n^{3}\right)$)
on $1^{\text {st }}$ iteration, then on later iterations just use substitution (cost $\sigma\left(n^{2}\right)$, same as applying $A \ldots$) so, really only a 1-time cost.
- Convergence: power iteration w/ eigenvalues $\left(\lambda_{j}(A)-m\right)^{-1} \ldots$
closest to M
- Suppose $\left|\lambda_{J}^{d}-\mu\right|<\left|\lambda_{k}-m\right| \leq\left|\lambda_{i}-m\right| \quad \forall i \neq J \ldots k$ and $y_{J}=\left[V_{v}^{-1}(0)\right]_{J} \neq 0$
then: neat closest to m

$$
\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|=O\left(\left(\frac{\mid m-\lambda_{J}!}{\mid m-\lambda_{k}!}\right)^{k}\right) \text { and }\left|\lambda^{(k)}-\lambda_{J}\right|=O\left(\left(\frac{\mid m-\lambda_{J}!}{\mid m-\lambda_{k}!}\right)^{2 k}\right)
$$

- Converges quickly if $\mu \approx \lambda_{J}$ and is much closer to λ_{J} than any other eigenvalue
- Con find $\left(v_{j}, \lambda_{j}\right)$ sit. $\left|\lambda_{j}-m\right|$ is minimized (t_{J} closest to M)
- Q: how to pick M ? Can we update wo a better guess to an eigenvalue as we go?
- yes: use $\mu=\lambda^{(k)} \ldots$

3. Rayleigh 4 Quotient Iteration:
l. input $A, v^{(0)}$ w/ $\left\|v^{(0)}\right\|_{2}=1$,
4. iterate until stopping
(iii) $\lambda^{(k)}=r\left(A_{j} v^{(k)}\right)=v^{(k)^{*}}\left(A_{v}(k)\right)$. estimate eigenvalue

* (i) solve $\left(A-\lambda^{(k)} I\right) w=v^{(k)} \quad$ apply $(A-m I)^{-1}$... raise the power
(ii) $v^{(k+1)}=w /\|w\|$
- normalize \rightarrow estimate eigenvector
* now " $(i)^{\prime}$ " is expensive... $\lambda^{(k)}$ changes
wo every step so need a new reduction
eveylime... cost $\theta\left(n^{3}\right)$ if we direct methods
- Convergence: Rayleigh quotient iteration converges to some eigenvaluelvecters pair for almost all "N).

Denote the par $\left(v_{j}, \lambda_{J}\right)$. Then, in the
limit of large K, convergence is cubic $\leftarrow!!!$ crazy fast: error $1 / 10 \rightarrow 1 / 10^{3} \rightarrow 1 / 109 \rightarrow 1 / 10^{27}$ in the sense:

$$
\begin{aligned}
\left\|v^{(k+1)}-\left(\pm v_{J}\right)\right\| & =\theta\left(\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|^{3}\right) \\
\left|\lambda^{(k+1)}-\lambda_{J}\right| & =\sigma\left(\left|\lambda^{(k+1)}-\lambda_{J}\right|^{3}\right)
\end{aligned}
$$

- Why? b/c when $v^{(k)} \approx v_{J}$ then $\lambda^{(k)}=r\left(A, v^{(k)}\right) \approx \lambda_{J}$ w/ quadratic eillors

$$
\left(\lambda^{(k)}-\lambda_{J}=\theta\left(\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|^{2}\right)\right.
$$

then the inverse iteration update to go to $v(k+1)$ is linear:

$$
\begin{aligned}
&\left\|_{v}(k+1)-\left(\pm v_{J}\right)\right\|= \theta\left(\left(\frac{\left(\lambda_{J}-\lambda^{(k)} \mid\right.}{\left.1 \lambda_{l}-\lambda^{(k)}\right)}\right)\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|\right) \\
& \quad L_{\text {neat }} \text { closest } \\
& \text { where }\left|\lambda_{J}-\lambda^{(k)}\right| \rightarrow \theta\left(\left\|_{v}{ }^{(k)}-\left(\pm v_{J}\right)\right\|^{2}\right) \\
& \quad\left|\lambda_{L}-\lambda^{(k)}\right| \rightarrow \min _{l \neq J}\left\{\left|\lambda_{l}-\lambda_{J}\right|\right\}=\sigma(1) \\
&= \sigma\left(\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|^{3}\right)!
\end{aligned}
$$

Thwsdoy - May $\|^{\text {th }}-$ Eigenvalue Methods.

- Logistics:
- HW 5 due tonight
- Project 2 pasted, due Friday of finals week

Goals:

- Rayleigh quotient iteration
- Simultaneous iteration
- The $Q R$ algorithm
- Shifts
- Preprocessing (reduction bo upper Hessenberg)
- recall from Tuesday:

1. Rayleigh quotient $r(A, v)=\frac{v^{*} A v}{v^{*} v}$ is quadratically accurate \approx to λ_{J} if $v \approx v_{J}$
2. Power itreation: $A^{k} v^{(0)} \propto v^{(k)} \longrightarrow v_{1}$ if $\left|\lambda_{1}\right|>\left|\lambda_{j}\right|$
$\forall \rho>1$ and converges linearly,

$$
\left\|v^{(k+1)}-\left(\pm v_{1}\right)\right\|=\theta\left(\frac{\mid \lambda_{z}}{1 \lambda_{1} \mid}\left\|v^{(k)}-\left(\pm v_{1}\right)\right\|\right)
$$

so

$$
\left\|_{v}(k)-(\pm v,)\right\|=\theta\left(\left(\frac{1_{2} 1_{2}}{1,1}\right)^{k}\right)
$$

3. Inverse iteration: $(A-m I)^{-k} v^{(0)}{ }_{\alpha} v^{(k)} \longrightarrow v_{J}$ where $\left|\lambda_{J}-m\right|<\left|\lambda_{L}-m\right| \leq\left|\lambda_{i}-m\right|$

$$
\forall \quad i, L \neq J
$$

next closest
converges linearly,

$$
\left\|v^{(k+1)}-\left(\pm v_{J}\right)\right\|=\theta\left(\frac{1 \lambda_{J}-m \|}{\lambda_{L}-m 1}\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|\right)
$$

so

$$
\left\|v^{(k)}-\left(\pm v_{j}\right)\right\|=\theta\left(\left(\frac{\left(\lambda_{1}-m_{1}\right.}{1_{2}-m_{1}}\right)^{k}\right)
$$

fast if mamet closer to one eigenvalue than any of the others...

- idea: can we use $r\left(A, v^{(k)}\right)$ to iteratively improve μ ?

3. Rayleigh Quotient Iteration:
I. input $A, v^{(0)} w /\left\|v^{(0)}\right\|_{2}=1$,
4. iterate until stopping
(iii) $\lambda^{(k)}=r\left(A, v^{(k)}\right)=v^{(k)^{*}}\left(A v^{(k)}\right)$. estimate eigenvalue
*(i) solve $\left(A-\lambda^{(k)} I\right)_{w}=v^{(k)} \quad$ apply $(A-m I)^{-1}$... raise the power
(ii) $v^{(k+1)}=w /\|w\|$

- normalize \rightarrow estimate eigenvector
* now "(i)" is expansive... $\lambda^{(k)}$ changes
w/ awry skep so need a new reduction
overtime... cost $\theta\left(n^{3}\right)$ if we direct methods
- Convergence: Rayleigh quotient iteration converges to some eigenvaluelvecter pair for almost all mm .
Denote the par $\left(v_{j}, \lambda_{J}\right)$. Then, in the
limit of large K, convergence is cubic $\leftarrow!!!$ crazy fast: error $1 / 10 \rightarrow 1 / 0^{3} \rightarrow 1 / 1091 / 0^{27}$ in the sense:

$$
\begin{aligned}
\left\|v^{(k+1)}-\left(\pm v_{J}\right)\right\| & =\theta\left(\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|^{3}\right) \\
\left|\lambda^{(k+1)}-\lambda_{J}\right| & =\theta\left(\left|\lambda^{(k)}-\lambda_{J}\right|^{3}\right)
\end{aligned}
$$

- Why? b/c when $v^{(k)} \approx v_{J}$ then $\lambda^{(k)}=r\left(A, v^{(k)}\right) \approx \lambda_{J} w /$ quadratic errors

$$
\left(\lambda^{(k)}-\lambda_{J}=\sigma\left(\left\|v^{(k)}-\left(\pm v_{j}\right)\right\|^{2}\right)\right.
$$

then the inverse iteration update to go to $v^{(k+1)}$ is linear:

$$
\begin{aligned}
\left\|v^{(k+1)}-\left(\pm v_{J}\right)\right\|= & \theta\left(\left(\frac{\lambda_{J}-\lambda^{(k)} \mid}{\left.1 \lambda_{L}-\lambda^{(k)}\right)}\right)\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|\right) \\
& \sum_{\text {next closest }} \\
& \text { where }\left|\lambda_{J}-\lambda^{(k)}\right| \rightarrow \theta\left(\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|^{2}\right) \\
& \left|\lambda_{L}-\lambda^{(k)}\right| \rightarrow \min _{l \neq j}\left\{\left|\lambda_{l}-\lambda_{J}\right|\right\}=\sigma(1) \\
= & \sigma\left(\left\|v^{(k)}-\left(\pm v_{J}\right)\right\|^{3}\right)!
\end{aligned}
$$

- Raykigh quotient iteration finds one eigenpair... how do we find all of the eigenpars at once?
-ides: run iteration on multiple input directions at once...
- from now on, assume A is diagonalizable
- Simultaneous Iteration: let's run power iteration on many inputs simultaneously...

iterate:

$$
\begin{aligned}
& w=A v^{(k)} \\
& v^{(k+1)}=\left[\begin{array}{cccc}
w_{1} / 1 w_{1} & w_{2} / 1 w_{2} w_{2} & \ldots & w_{2} / 1, w_{11}
\end{array}\right]
\end{aligned}
$$

then $\left\|v_{j}^{(k)}\right\|=1$ and $v_{j}^{(k)} \propto A^{k} v_{j}^{(0)}$

- problem: all $v_{j}^{(k)} \longrightarrow v_{1}$ (dominant eigenvector)
since
- sol: if $v_{1}^{(k)} \longrightarrow v_{1}$ then, by Keeping $v_{j \neq 1}^{(k)}$ "away" from $v_{1}^{(k)}$, we hope $v_{j \neq 1}^{(k)}$ will converge to a different eigenvector.
- Suppose A is Hermitian $\left(A=A^{*}\right)$. Then A is unitarily diagonalizable...
$A=V \Lambda V^{*}$ where V is unitary

$$
\left(v_{i} \perp v_{\jmath} \forall i \neq \jmath \text { and }\left\|v_{i}\right\|=1 \quad \forall i\right)
$$

- then, since all the eigenvectors are \mathcal{L}, let's Keep all of the iterates $v_{j}{ }^{(k)} \perp$ to one another...
if $v_{i}^{(k)} \perp v_{j}{ }^{(k)} \forall i \neq j$ and k then

$$
\begin{aligned}
& v_{i}^{(k)} \perp v_{1}^{(k)}, v_{1}^{(k)} \longrightarrow v_{1} \text { so } v_{i}^{(k)} \longrightarrow \in \mathbb{R}^{n} / v_{1}=\operatorname{span}\left(v_{1}\right)^{\perp} \\
& \text { that is } \lim _{k \rightarrow \infty} v_{i \neq 1}^{(k)} \in\left\{w \in \mathbb{R}^{n} \mid w \perp v_{1}\right\}
\end{aligned}
$$

- in particular, if we maintain 1 in a triangular fashion:

$$
\left.v_{1}^{(k)} \propto A^{k} v_{1}^{(0)}, v_{2}^{(k)} \propto\left(A^{k} v_{2}^{(0)}\right)_{v_{1}(k)}, \ldots v_{j}^{(k)} \propto\left(A^{k} v_{j}^{(0)}\right)_{1 \operatorname{spon}\left(v_{1}^{(k)}, \ldots v_{j-1}^{(k)}\right)}\right)
$$

- can prove inductively.. if $v_{i}{ }^{(k)} \rightarrow v_{i} \forall i \leq j$
then
so:

$$
v_{j+1}^{(k)} \longrightarrow v_{j+1}
$$

- leads to an algorithm:
$\left[\begin{array}{l}\text { - Simultaneous Iteration: } \\ \text { 1. input } A \in \mathbb{C}^{n \times n} \text { Hermitian, } V^{(0)} \in \mathbb{C}^{n \times \ell}\end{array}\right.$

2. orthogonalize $V^{(0)} \longrightarrow Q^{(0)}$
3. iterate for $K=1,2, \ldots$ until stopping
(i) $W=A Q^{(k-1)} \longleftarrow$ increase the power
(ii) $Q^{(k)} R^{(k)}=W \longleftarrow$ triangular orthogonalization
(iii) $\lambda_{j}^{(k)}=r\left(A, q_{j}^{(k)}\right)=q_{j}^{(k)}\left(A_{q_{j}}{ }^{(k)}\right) \leftarrow L_{\text {optional }} \quad \begin{gathered}\text { use }\end{gathered}$ Householder
then $g_{j}^{(k)}$ are normalized and mutually L and converge to the l longest eigenvectors $V_{J} \longrightarrow \underbrace{\lambda_{j}^{(k)}}=r\left(A, q_{j}^{(k)}\right) \xrightarrow{k \rightarrow \infty} \lambda_{j}$ use Rayleigh to estimate eigen values...

$$
\begin{aligned}
& v_{j+1}^{(k)} \propto\left[A^{k} v_{j+1}^{(0)}\right]_{1 \operatorname{spon}\left\{v_{1}^{(k)}, \ldots v_{j}^{(k)}\right\}}=\left[\sum_{i=1}^{n} \lambda_{i}^{k}\left(v_{i}^{*} v_{j+1}^{(0)}\right) v_{i}^{1}\right]_{1 \operatorname{span}\left\{v_{1}^{(k)} \ldots y^{(k)}\right\}} \\
& =\sum_{i=1}^{i} \lambda_{i}^{K}\left(v_{i}^{*} v_{j+1}^{(0)}\right) \underbrace{v_{i 1 \operatorname{spon}\left\{v_{1}^{(*)} \ldots v_{j}^{(k)}\right\}}}_{v_{l}^{(k)} \rightarrow v_{l} \begin{array}{l}
\text { as } k \rightarrow \infty \\
\text { for } l \leq j
\end{array}} \\
& \text { so } V_{i}^{\perp \text { span }\{\ldots \xi}<0 \\
& \text { if } i \leq J, \rightarrow V_{i} \text { if iss since v's ore } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { then, if }\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right|>\ldots \\
& v_{1}^{(k)} \longrightarrow v_{1} \\
& \text { so } v_{2}^{(k)} \longrightarrow\left(A^{k} v_{2}^{(0)}\right) \perp v_{1} \longrightarrow v_{2} \quad \text { (eigenvector for next largest eigenvalac) } \\
& \text { so } \quad v_{J}^{(k)} \longrightarrow\left(A^{k} v_{J}^{(0)}\right)_{\perp \operatorname{spon}\left(v_{1},-v_{J-1}\right)} \longrightarrow v_{J}
\end{aligned}
$$

- simultaneous iteration is usually expressed in a different order...
orthogonalize, then raise the power (multiply by A)
[QR Iteration:

1. input $A \in \mathbb{C}^{n \times n}$, Hermition, $A^{(0)}=A$
2. iterate for $k=1,2, \ldots$ until stopping
(i) $Q^{(k)} R^{(k)}=A^{(k)}$
all backward stable
(ii) $A^{(k+1)}=R^{(k)} Q^{(k)}$
\qquad orthgonalize (triangular), we Householder implicitly multiply by A
(iii) $\lambda_{j}^{(k)}=r\left(A, q_{j}^{(k)}\right)=q_{j}^{(k)^{*}} A_{q^{(k)}}=A_{j j}^{(k+1)} \longleftarrow$ optional
cost: $\theta\left(k_{n}{ }^{3}\right)!!!$

- are these the some?
- let $Q_{s}{ }^{(k)}, R_{s}{ }^{(k)}$ be the Q 's and R^{\prime} s
produced by simultaneous iteration initialized $w / V^{(0)}=I$.
- let $Q^{(k)}, R^{(k)}$ be the Q; and R^{\prime} s
produced by $Q R$ itention initialized $w / V^{(\prime \prime)}=I$.
- let A^{k} be the $K^{\text {th }}$ pores of A
- then:
(i) $R_{s}^{(k)}=R^{(k)}$
(ii) $A^{(k)}=Q_{s}^{(k)} A Q_{s}^{(\text {(3) }}$

$$
\underbrace{\text { (ii) } Q_{s}^{(k)}=\prod_{j=1}^{k} Q^{(k)}=Q^{(1)} Q^{(2)} \ldots Q^{(k)}}_{R_{s}^{\prime} \text { and } Q_{s}^{\prime}}
$$

$$
\text { (iv) } A^{k}=Q_{s}^{(k)} \underbrace{\left[\begin{array}{lll}
R_{s}^{(k)} R^{(k+1)} \ldots & R_{s}^{(1)}
\end{array}\right]}
$$

implicitly, $Q R$ of A^{k}

- Let's check (iii)

$$
\begin{aligned}
& \cdot A^{(0)}=A \\
& \cdot Q^{(1)} R^{(1)}=A^{(0)} \longmapsto R^{(1)}=Q^{(1)^{*}} A^{(0)} \\
& \cdot A^{(1)}=R^{(1)} Q^{(1)}=Q^{(1)^{*}} A^{(0)} Q^{(1)}=Q^{(1)^{*}} A Q^{(1)} \\
& \cdot Q^{(2)} R^{(2)}=A^{(1)} \longmapsto R^{(2)}=Q^{(2)^{*}} A^{(1)} \\
& \cdot A^{(2)}=R^{(1)} Q^{(2)}=Q^{(2)^{*}} A^{(1)} Q^{(2)}=\left(Q^{(2)^{*}} Q^{(1)^{*}}\right) A^{(0)}\left(Q^{(1)} Q^{(2)}\right) \\
& \vdots \\
& =\left(Q^{(1)} Q^{(2)}\right)^{*} A\left(Q^{(1)} Q^{(1)}\right) \\
& \cdot A^{(K)}=Q^{(1)^{*}} A^{(k-1)} Q^{(k)}
\end{aligned}
$$

so:

$$
A^{(k)}=\left(Q^{(1)} Q^{(2)} \ldots Q^{(k)}\right)^{*} A\left(Q^{(1)} Q^{(e)} \ldots Q^{(k)}\right)=Q_{s}^{(k)^{*}} A Q_{s}^{(k)} J
$$

- Equation (iii): $A^{(k)}=Q_{s}^{(k)^{*}} A Q_{s}{ }^{(k)}$
where $Q_{s}{ }^{(k)}=Q^{(1)} Q^{(2)} \ldots Q^{(k)}$
provides an alternative perspective on $Q R$ iteration...
-observations: I. $Q_{s}^{(k)}$ is unitary so

$$
\begin{aligned}
& Q_{s}^{(k)^{k}}=Q_{s}^{(k)^{-1}} \\
& \therefore A^{(k)}=Q_{s}^{(k)^{-1}} A Q_{s}^{(k)} \Longleftrightarrow Q_{s}^{(k)} A^{(k)} Q_{s}^{()^{-1}}=A
\end{aligned}
$$

are similarity trans forms.
$\therefore A^{(k)}$ and A have the some eigenvalues
2. $\lambda_{j}^{(k)}=r\left(A_{1} q_{s}^{(k)}\right)=q_{s}^{(k)^{*}} A q_{s j}^{(k)}=e_{j}^{\top}\left[Q_{s}^{(k)^{*}} A Q_{s}^{(k)}\right] e_{j}$

$$
=A_{J J}^{(k)}
$$

and $\lambda_{j}^{(k)} \longrightarrow \lambda_{j}$ so $A_{j}^{(k)} \rightarrow \lambda_{j}$
... the diagonal entries of $A_{\downarrow j}^{(k)}$ converge to the eigenvalues of A.
from convergence of simultaneous intention
3. $q_{s}{ }^{(k)} \longrightarrow V_{j}$ so $Q_{s}^{(k)} \longrightarrow V$ so, if $A=V \Lambda V^{-1}$
then $A^{(k)}=Q_{s}^{(k)^{*}} A Q_{s}^{(k)} \longrightarrow V^{-1} V \Lambda V^{-1} V=\Lambda$
so:
$\left.Q_{s}^{(k)}=Q^{(1)} Q^{(2)} \ldots Q^{(k)} \rightarrow V\right\} Q R$ iteration is an eigenvalue revealing
$A^{(k)}=Q_{s}{ }^{(k)^{*}} A Q_{s}{ }^{(k)} \longrightarrow \Lambda$. \quad iteration. At each stage we implicitly
$\left(A_{j j}^{(k)} \rightarrow \lambda_{j}, A_{i j}{ }^{(k)} \rightarrow 0\right.$ if $\left.i \neq j\right)$ puform a munition similarity trons form of A that takes $A^{(k)} \rightarrow A^{(k+1)}=Q^{(k+1)^{*}} A^{(k)} Q^{(k+1)}$

- Convergence follows from convergence of power iteration,

$$
\text { s.1. as } k \rightarrow \infty, A^{(k)} \rightarrow \Lambda
$$

if A Hermition, $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots\left|\lambda_{n}\right|$ then $A^{(k)} \rightarrow \Lambda$,
ord, the product of the transform: : $Q_{s}^{(1)}=Q^{(1)} Q^{(2)} Q^{(t)}$ and $Q_{s}^{(k)} \rightarrow V$ geometrically (linear convergence) w/ constant:

$$
\text { converges to } V, Q_{s}^{(k)} \longrightarrow V
$$

$$
C=\max _{j \in\{1, n-1]}\left\{1 \lambda_{j+1} / 1 \lambda_{J} \mid\right\}
$$

(if use $v^{(0)} \in \mathbb{C}^{n \times \ell}$ then $C=\operatorname{mox}_{J \in(1, \ell-1]}\{\ldots\}$) slow for similar eigenvalues...

- Combining ideas from:
(i) eigenvalue revealing iteration \qquad use to preprocess, reduce cost of each $Q R$ colouration
(ii) Roy leigh quotient iteration (shifting) \qquad use to accelerate convergence, isolate particular eigenvalues, gives a practical (widely used) algorithm... then split into smaller subproblems (see latures 28 and 29)

Eigenvalue Revealing Factorizations (and Iteration):

- Def: given any $A \in \mathbb{C}^{n \times n}$ then $]$ a Schur
decomposition of A :
where:
(i) $Q \in \mathbb{C}^{n \times n}$ is unitary
(ii) T is upper triangular

Facts: 1. $Q^{*}=Q^{-1}$ so $Q T Q^{*}=A, T=Q^{*} A Q$
are similarity transforms so $\Lambda(T)=\Lambda(A)$
(A and T have the same eigenvalues)
2. T is triangular so $\lambda_{J}(A)=\lambda_{J}(T)=T_{J}$
... the eigenvalues of A are the diagonal entice of T.
hence T is "eigenvalue reveling"
3. if A is Hermition. $T=Q A Q^{*}$ is Hemition, all Hermitian triangular matrices are diogonol so T is diagonal, $T=\Lambda$ so $Q=V$.

- Eigenvalue revealing iteration: find Q st. $A=Q T Q^{*} \Rightarrow T=Q^{*} A Q$
impossible w/ a direct method Cotherwise, direct methods for eigenvalues would exist)
.instead, attempt iteratively: $A^{(k)}=Q^{(k)^{*}} A^{(k-1)} Q^{(k)}$
s.f. $A^{(k)} \rightarrow T$
and $Q_{s}^{(k)}=Q^{(1)} Q^{(e)} \ldots Q^{(k)} \longrightarrow Q$
- exactly what $Q R$ iteration does. Stable since all operations are naitory.
- Preppocessing: belie starting $Q R$ iteration
find a unity similarity transform of A,
$\hat{A}=\hat{Q}^{*} A \hat{Q}$ st. \hat{A} :s cheaper
to work with (wont \hat{A} sparse, $\hat{A} \geqslant T$)
-usually, aim for \hat{A} upper Hessenberg...
- Def: $\hat{A} \in \mathbb{C}^{n \times 1}$ is upper Hessenberg if $\hat{A}_{i j}=0 \quad \vee i i_{j}+1$.
(urpese triangles +1 nonzero subdiogono1)
- Con reduce from $A \rightarrow \hat{A}$ w/ a direct method
(see lecture 26, use Householder to form \hat{Q} recursively...

- cost: $\sigma\left(\frac{10}{3} n^{3}\right)$ generically, $\theta\left(\frac{4}{3} n^{3}\right)$ if Hermitian
- backward stable (unitary operations / Householder)
- using \hat{A} cuts cost of each step of $Q R$ iteration
- if A is Hemimion $\Rightarrow \hat{A}$ is tridiggonal
reduces cost of each $Q R$ step to $\theta\left(n^{2}\right)$
so cost of $Q R$ iteration is $\theta\left(\#\right.$ iterations.n $\left.{ }^{2}\right)$
Coffee \# iterations << n... reduction to upper Hessenberg more expensive than subsequent iteration!)
- Shifting: update $Q R$ skep w/ shift $\mu^{(k)}$...
(i) $Q^{(k)} R^{(k)}=A^{(k-1)}-\mu^{(k)} I$
(i) $A^{(k)}=R^{(k)} Q^{(k)}+\mu^{(k)} I$
where $M^{(k)}$ is chosen to speed convergence

$$
\text { (EEK: } \left.n^{(k)}=A_{j}^{(k-1)}=r\left(A, q_{f}^{(k-1)}\right)=\lambda_{j}^{(k)} \simeq \lambda_{j}\right)
$$

- Method: 1. use Householder to reduce to upper Hessenberg

2. run $Q R$ iteration w/ shifts

- achieves: cubic convergence like Rayleigh quotient iteration produces backward stable estimates

$$
\begin{aligned}
& \tilde{V}=Q_{s}^{(k)} \simeq V \\
& \tilde{\Lambda}=\operatorname{dig}\left(A^{(k)}\right) \simeq \Lambda
\end{aligned}
$$

st.

$$
\tilde{A}=\tilde{V} \tilde{\Lambda} \tilde{V}^{-1} \text { satisfies } \frac{\|\tilde{A}-A\|}{\|A\|}=\sigma\left(\varepsilon_{m}\right)
$$

and

$$
\frac{\left|\tilde{\lambda}_{5}-\lambda_{د}\right|}{\|A\|}=\theta\left(\varepsilon_{m}\right) .
$$

- Warning: conditioning of the eigenvectors B values of A in perturbations to A can be very bad, especially if A is not unitarily diagonalizable!
- stability of $\left(\lambda_{1}, v_{j}\right)$ depends on gop between λ_{j} and next nearest eigenvalue...

Week 9 - Applications of Spectral Linear Algebra: Embedding Data in Low - Dimensions
$\underline{T_{\text {tuesday }}}-$ May $^{16}{ }^{\text {th }}$

- Logistics:
- HW 6 and Project 2 pasted, due the $25^{\text {th }}$ and $26^{\text {th }}$
- Learning Goals:
I. State an embedding/low-dimensional data representation problem

2. Relate spectral linear algebra to geometry of data
3. Perform PCA using the SVD and explain why it works

An Embedding Problem.

- Suppose we are given a collection of data vectors

$$
\left\{x_{1}, x_{2}, \ldots x_{m}\right\}, x_{j}=\left[\begin{array}{c}
x_{1, j} \\
\vdots \\
x_{n j}
\end{array}\right] \in \mathbb{R}^{n}
$$

where $x_{i j}$ is the $i^{\text {th }}$ quantity meowed in the $j^{\text {th }}$ trial/subject/example.

- collect the data into a matrix x :
\qquad
- Ex: collection of m images, each containing p^{2} pixels, color of each pixel is determined by 3 \#'s $(1, g, b)$ $\overbrace{\sim}^{m}$ then $x_{i j} \in \mathbb{R}^{3 p^{2}}, m$ vectors x
- Classic Ex: collection of hand drown digits pictures of faces, pictures of cats

(MNIST: $m=60 \times 10^{4}$: mages of hand down digits)
- Ex. genotype data: $m=1,387$ individuals (from pool of 3×10^{3} European study participants)
$n=197,146$ loci

$$
\begin{aligned}
& \text { triol/exemple }
\end{aligned}
$$

- Each data vector $x \in \mathbb{R}^{n}$ can be treated as a point in an n-dimensional ($n-D$) space
- Collection of m points form a scatter cloud

- Problem: n is often large, or very large
- Ex: a 480 p image has $\left.n=1,353,600=\sigma\left(10^{6}\right)\right\}$ million dimensional!
genetic data using $\theta\left(10^{5}\right)$ loci
high- D data can be difficult to work with:
[- memory intensive \rightarrow desire: compression
- visualize \rightarrow desire: reduce to 2-4 dimensions
-reduce dimension...
- interpret: individual entries ore rarely meaningful alone meaning stored in the collection of values...
- really an issue of basis:

$$
x=x_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\ldots x_{n}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \quad\left[\begin{array}{l}
\text { rarely meaningful alone } \\
\text { don't represent common } \\
\text { features in the data }
\end{array}\right.
$$

\longrightarrow desire: Work in a meaningful coordinate system... use a basis that captures relevant features or patterns in data, separates distinct examples (for classification)

- Embedding Problem: given $X=\left\{x_{1}, x_{i}, \ldots x_{m}\right\}, x_{j} \in \mathbb{R}^{n}$ find a mopping that sends each data vector $x_{j} \rightarrow y_{j} \in \mathbb{R}^{d}$ where dean
that prosemes relevant potteras/structive in X
- aim to lose as little info about X as passible
- often seek a mapping sit. the entries of $y \in \mathbb{R}^{d}$
(directions in \mathbb{R}^{d}) are intrinsically meaning full...
geometry in the embedting/1oteat space \rightarrow messing in dato
- Representation in a latent spore: seek a mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$ sit. $x_{j} \approx f\left(y_{j}\right)$ usually for den.
- then, data X is concentrated near a manifold
 equal to the range of f
- Linear Repuseatation: $f(y)$ is an affine function of y.

$$
\text { that is: } f(y)=\bar{x}+B_{y}, \bar{x} \in \mathbb{R}^{n}, B \in \mathbb{R}^{n \times d}
$$

- represents data as a linear combination of d basis vectors $b_{: 1,}, b_{: 2}, \ldots b_{: d}$ where $b_{: j} \in \mathbb{R}^{n}$

- basis vector $\{b,\}_{j}^{j}$ are "feature vectors", repiseat x as a weighted combination of features, weights \{y $\}_{s=1}^{d}$
- the range of f is the affine subspace $\bar{x}(1)$ range (B) possible if X concentrated near a d dimensional subspace
- for fixed \bar{x}, B find y_{j} from x_{j} by solving the LS problem:
minimize: $\left\|B_{y}-\left(x_{1}-\bar{x}\right)\right\|^{2}$ over all $y \in \mathbb{R}^{d}$.
so, solve by projection: $y_{j}=\left(x_{j}-\bar{x}\right)_{111}$ range (B)
- Con find y from x, B, \bar{x} via projection...
-how to choose (B, \bar{x}) ? \leftarrow a new problem...
- pose as an optimization problem:
- Find a d-dimensional subspace, range $(B)+\bar{x}$ st. projection onto the subspace retains most of the "information" or "structure" of X.
- what we mean by "informotion/stracture" determines
 the form of the problem...
-Ex: aim to maintain as much variance/spread in the data as possible - relevant to linear classifiers \$ regression, normally distributed data.
-Ex: aim to maintain pairwise distances and angles between embedded data points...
- Question: Why con we hope to find a subspace of dimension dean s.t. projection onto it retains most of structure of x ?
- Johnson-Lindenstrauss Lemma:

Given any $X_{,}\left\{x_{: j}\right\}_{j=1}^{m}, x_{j} \in \mathbb{R}^{n}$ let $0<\varepsilon<1$ and $d=\left\lceil 8 \ln (m) / \varepsilon^{2}\right\rceil$.
Then, there is a linear map $M: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq \underbrace{\| M\left(x_{i}-x_{j}\right)}_{y_{i}-y_{j}}\left\|^{2} \leq(1+\varepsilon)\right\| x_{i}-x_{j} \|^{2}
$$

for all $1 \leq i, j \leq m$.

hi hoD (say, projected) into a low-D space while nearly preserving the distance between points.
and the low dimension d is logarithmic in the \notin of points m.

- can extend to similar statements regarding the inner-products ... nearly preserve angles.
- So, can reasonably hope to find a linear representation st. projection retains most of the structure in X...
- Principal Component Analysis (PCA):
- informally: given X, find a linear representation of X using shift \bar{x} and features $Q=\left\{q_{1}, \cdots q_{d}\right\}$ st

1. features are independent 2. projection onto $\bar{x}+\operatorname{span}(Q)$ retains as much variance $\left(q_{i} \perp q_{j}\right.$ for if $)$ as possible.

- Variance in data: given samples $\left\{x_{j}\right\}_{j=1}^{m}, x_{j} \in \mathbb{R}$
- Centroid: $\bar{x}=$ average of samples $=\frac{1}{m} \sum_{j=1}^{n} x_{j}$
- Sample Var in $x=$ average distance to \bar{x} squared (when x_{j} drown uniformly

$$
\text { from } X)=\frac{1}{m-1} \sum_{j=1}^{m}\left(\left|x_{j}-\bar{x}\right|\right)^{2}
$$

- $\underline{n-\text { dimensions: }}$ given $\left\{x_{j}\right\}_{j=1}^{m}, x_{j} \in \mathbb{R}^{n}$

Centroid: $\bar{x}=\frac{1}{m} \sum_{j=1}^{m} x_{j}$ so $\bar{x}_{i}=$ areroge value across th row of X

- Component-Wise Variance: $: V_{a r}$ in th comp $=\frac{1}{m-1} \sum_{j=1}^{m}\left(\left|x_{i j}-\bar{x}_{i}\right|\right)^{2}$
- Variance: sum of component-wise variances

$$
\begin{aligned}
\operatorname{Var}[x] & =\frac{1}{m-1} \sum_{i=1}^{n} \sum_{j=1}^{m}\left(\left|x_{j j}-\bar{x}_{i}\right|\right)^{2}=\frac{1}{m-1} \sum_{j=1}^{n} \sum_{i=1}^{n}\left(\left|x_{i j}-\bar{x}_{i}\right|\right)^{2} \\
& =\frac{1}{m-1} \sum_{j=1}^{n}\left\|x_{j}-\bar{x}\right\|^{2}
\end{aligned}
$$

$=$ average (distance from randoroly sampled x_{j} to $\left.\bar{x}\right)^{2}$

- We've seen this before:
- define centered data matrix $x_{j}^{c}=$ original $x_{j}-\bar{x}$
- recall: given $A \in \mathbb{R}^{n \times x}$, the Frobenius nom of A is $\|A\|_{\text {pion }}{ }^{2}=\sum_{i, 1} a_{i, j}{ }^{2}$
-then:

$$
\operatorname{Var}\left[x^{c}\right]=\frac{1}{m-1} \sum_{i, j=1}^{M}\left(x_{x_{j}^{c}}^{c}\right)^{2}=\frac{1}{m-1}\left\|X^{c}\right\|_{f_{f_{0}}}^{2}
$$

- So, gaol is to embed X by projecting onto a d-dmensional subspace while maximizing the frobenius norm of the projection...

- Assurne X is centered (if not, replace X with X^{c})
- Then, given d basis vectors $\left\{q_{1}, q_{2}, \cdots, q_{d}\right\}$, all \perp and normalized:

- then:

$$
\begin{aligned}
& \text {.so: } X \approx Q^{(\alpha)} Y^{(1)} \text { solve for } Y^{(\alpha)} \text { by fogection: } Y^{(1)}=Q^{(\omega)^{\top}} x
\end{aligned}
$$

- If $Y^{(d)}=Q^{(d)} x, \quad X \approx Q^{(d)} Y^{(d)}$ then the error in the representation is:

$$
E^{(d)}=X-Q^{(d)} Y^{(d)}=X-X_{11 Q}=X_{\perp Q}
$$

component of $x \perp$ to range (Q)

to its approximation

- PCA (formally): given $x \in \mathbb{R}^{n \times m}$ (centered) find $Q \in \mathbb{R}^{\text {ned }}$ s.1.

1. independence: $q_{i} \perp q_{j}$ for any $i \neq j,\left(\left\|q_{i}\right\|=1\right.$ for any i)
2. accuracy: set:

$$
Y=Q^{\top} X, X \approx Q Y, E=X \cdot Q Y
$$

maximize:

$$
\operatorname{Var}[Y] \text { given } Q \Rightarrow \text { maximize }:\left\|Q^{\top} X\right\|_{\text {pro }}^{2}
$$

- Sola:

1. center the data $]$. $\frac{C l_{\text {aim: }}:}{q_{j}}=u_{J}$ maximizes the variance after projection.
2. SVD: $X=U \Sigma V^{\top}$
3. set $q_{j}=u_{J}$

- take a greedy approach (solve for q_{1}, then q_{2}, \ldots)
- apply geometric interpretation of the svo
- Original Problem: find $Q \in \mathbb{R}^{\text {ned }}$, orthonormal col's, maximizing $\left\|Q^{\top} \times\right\|_{\text {Pro }}^{2}$.
- "Greedy" Approach: solve for q, first, maximize $\left\|q^{\top} x\right\|^{2}$ subtract off projection of X onto q_{1} then solve for q_{z} maximizing the var. remaining - iterate

- Solving for q_{1} : given some $q, y=q^{\top} x$
- x is centered so mean $\left\{y_{\jmath}\right\}=q^{\top}$ mean $\{x\}=0$.
thus,

$$
\operatorname{var}(y)=\frac{1}{m-1} \sum_{د}^{m}(y)^{2}=\frac{1}{m-1}\|y\|^{2}=\frac{1}{m-1}\left\|q^{\top} x\right\|^{2}=\frac{1}{m-1}\left\|x_{q}^{\top}\right\|^{2}
$$

- so, to maximize var (y), maximize $\left\|x^{\top} q\right\|$ over all $\|q\|=1$
to maximize var (y) maximize $\left\|x^{\top} q\right\|$ over all $\|q\|=1 \ldots$
- recall, geometry of SVD: given $A \in \mathbb{R}^{m \times n}$

- so, A sends \mathcal{L}-normal basis $\left\{\dot{v}_{1}, \dot{v}_{2} \ldots \dot{v}_{n}\right\}$ to orthogonal basis $\left\{\sigma_{1} \dot{u}_{1}, \sigma_{c} \dot{u}_{1}, \ldots \sigma_{m} \dot{u}_{m}\right\}$
- sends $v_{\jmath} \rightarrow \sigma_{j} u_{\jmath}$ for $j \leq \min (m, n)$
($A v_{j}=\sigma_{j} u_{j}$ so, the input stretched the most by A is v_{1} since $\sigma_{1} \geq \sigma_{j}$ for $\rho \geq 1$)
-thus, given A : maximize $\left\|A_{q}\right\|$ over all q st. $\|q\|=1$ is solved by $q=v_{1},\left\|A v_{1}\right\|=\sigma_{1}$.
so, if $X=U \& V^{\top}$ then $X^{\top}=V \varepsilon^{\top} U^{\top}$ (swap roles of V and U)

the input $u_{1} \rightarrow \sigma_{1} v_{1}$ maximizes $\left\|X_{q}^{\top}\right\|$ over al $\|q\|=1$
thus, $q_{1}=x_{1}$.
- What about the remaining q's?

Induction:

- show that, if $\boldsymbol{q}_{k}=u_{k}$ for $k \leq J$ then $q_{j+1}=u_{j+1}$.
- argue using projection. (sec below)

Data: $x \quad=\underline{R e p r e s e n t a t i o n: ~} x^{(1)}=x_{1 q_{9}}+\underline{R e m a i n d e r}: E^{(1)}=x_{1 q}$

20:

... next longest siggteres vale is $\sigma_{H 1}$

- So, by induction: PCA is solved by the SVD! corresponds to rectors x_{j+1}, y_{1+1}.

1. $q_{j}=u j$ for $j \in[1, d] \quad(d \leq \operatorname{rank}(x)) \longrightarrow u ' s$ are \perp so $q_{i} \perp q$ q for $i \neq j$
2. $x^{(d)}=\sum_{k=1}^{d} \sigma_{k}\left(u_{k} v_{k}^{\top}\right)=\left[\begin{array}{ccc}1_{1} & 1 \\ u_{1} & u_{d} \\ 1 & d_{1}\end{array}\right]\left[\begin{array}{ll}\tau_{1} & \\ \varepsilon_{j}\end{array}\right]\left[\begin{array}{c}-v_{1}^{\top} \\ -v_{d}^{\top}-\end{array}\right]$
this is a ranked matrix.
is $x^{(d)}$ a good rank-d approx to x ?

- Question: does the greedy approach maximize var in all components?
minimize error?
- Question: does the greedy approach maximize var in all components? minimize error?
\rightarrow is $x^{(d)}=Q^{(d)} y^{(d)}$ an accurate approx. to X ?
- yes. In fact, it is optimal...
[-recall: given $X=U \& V^{\top}$ with rank r, can write X via a sum of outer products
that is: $X=\sum_{k=1} \sigma_{k}\left(u_{k} v_{k}^{\top}\right)$ is a sum of rank-one matrices $\left(u_{k} v_{k}^{\top}\right)$ weighted by the corresponding singular value, σ_{k}
- earlier we saw: $X^{(d)}=\left(Q^{(d)} Q^{(d)}\right)^{\top} X=P_{\text {" } Q} X=X_{1 Q}(d)$
- if $Q^{(d)}=\left[\begin{array}{ccc}1 & 1 & 1 \\ u_{1} & u_{2} & \ldots \\ 1 & 1 & u_{d} \\ 1 & 1 & 1\end{array}\right]$ then $X^{(d)}=\underbrace{\left.P_{11 \operatorname{spn}\left\{u_{1}, \ldots\right.} u_{j}\right\}} \cup \mathbb{V} V^{\top}$
so, $x^{(d)}=P_{11\left\{w_{1},-v_{d}\right\}} \sum_{k=1}^{f} \sigma_{k}\left(u_{k} v_{k}^{\top}\right)=\sum_{k=1}^{d} \sigma_{k}\left(u_{k} v_{k}^{\top}\right)+\sum_{k=d+1}^{\infty} 0=\underbrace{\sum_{k=1}^{d} \sigma_{k}\left(u_{k} v_{k}^{\top}\right)}$
truncate sum at d terms
- truncate the sum at d terms... $X \neq X^{(1)}=\sum_{k=1}^{d} \sigma_{k}\left(u_{k} v_{k}{ }^{\top}\right)$
- since $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \ldots x^{(d)} \geqslant x$ accurately for large enough d.
- Thy: (Eckart-Minsky-Young) given A, $m \times n$ w/ SVD $A=U \& V^{\top}$, and $\sigma_{i} \neq \sigma_{j}$ for i$\ddagger j$
then for $d \leq \operatorname{rank}(A)$:

$$
A^{(d)}=\sum_{j=1}^{d} \sigma_{j}\left(u_{j} v_{j}{ }^{\top}\right)
$$

is the unique minimizer of $\|A-B\|_{F_{10}}$ over all B rank-d.
$\therefore X^{(d)}$ is closest approx to X of rank-d. Minimizes $\left\|E^{(d)}\right\|_{F}^{2}=\left\|x-x^{(d)}\right\|_{F}^{2}$, Maximizes $\left\|x^{(d)}\right\|_{r}^{2}$
-Therefore: the sequence $\left\{x^{(d)}\right\}_{d=1}^{\text {ron kex) }}$ is low-ronk optimal
rank 1: $x^{(1)}=\sigma_{1}\left(u, v_{1}^{\top}\right)$
rank z: $x^{(z)}=\sigma_{1}\left(u_{1} v_{1}{ }^{\top}\right)+\sigma_{2}\left(u_{2} v_{2}^{\top}\right)$
rank 3: $x^{(3)}=\sigma_{1}\left(u_{1} v_{1}^{\top}\right)+\sigma_{2}\left(u_{2} v_{2}^{\top}\right)+\sigma_{3}\left(u_{3} v_{3}^{\top}\right)$
rank d: $x^{(d)}=\sum_{j=1}^{d} \sigma_{j}\left(u_{j} v_{j}^{\top}\right)$
$=$ best possible rank- 1 approx to x
$=$ best possible rank- 2 approx to x
$=$ best possible rank- 3 approx to x
$=$ best possible ranked approx to X.

- Questions:

1. how accurate is $x^{(d)}$? (what is $\left\|E^{(d)}\right\|_{\text {Fro }}^{2}$?)
see HW.

$$
\begin{aligned}
& \text { - }\left\|E^{(د)}\right\|_{f_{10}}^{2}=\left\|x-x^{(\delta)}\right\|_{f_{0}}^{2}=\sum_{J=1}^{\operatorname{cosk}(\alpha)} \sigma_{j}^{2}-\sum_{J=1}^{d} \sigma_{j}^{2}=\sum_{J \nu J} \sigma_{j}^{2}
\end{aligned}
$$

2. when con we choose $d \ll n$?
(when X is numerically low rank ...)

- when \exists dean s.1. $\sum_{J=1}^{j} \sigma_{J}^{2} \simeq \sum_{J=1}^{\text {rook }(x)} \sigma_{J}^{2} \Rightarrow$ when σ_{J} decay quickly
- Ex: Novembre et al; "Genes Mirror Geogroptry Within Europe," Nature, 2008
- data: $m=1,387$ individuals $\left.\begin{array}{l}n=197,146 \text { loci } i\end{array}\right\}$ but, much of genetic code likely shared by ancestry...
-suggests $d \ll n$ possible and variation in data meaningful
- seek d dim. subspace retaininglexplaining as much variance as possible...
- Where we go next:
- Questions: (Evaluating PCA)

1. Related Methods: Multi-Dimensional Scaling ... What if we preserve pairwise distoneses? angles?

Low Rank Mothy Completion... What if me ore missing dote?
2. why are many data matrices numerically low-rank?
(see Townsend B Odell, Why are big data matrices low rank SIAM J. MATH. DATA SCIENCE, 2019)
nice application of Johmem-tinderstrons!
3. does PCA extract interpretable featwes?
(see application example to game theory β strategic analysis in Poker \rightarrow yes! see "eigen forces" example \rightarrow no!
... discuss limits of froberius norm $\rightarrow L_{p}$ bow rank approx
... lack of realistic constraints in feature vectors, allow allerenoting/rechusive corrections working from overall average to details \rightarrow non-negotive matrix focbaization)
4. what if data is not concentrated on a low-d subspace?
can we use non-linear representations: how do we study topology of data?
(discuss intrinsic vs. extrinsic geometry, PCA depends on extrinsic geometry \rightarrow diffusion mops, spectral graph embedding, topological data analysis.)

Thursday - May $18^{\text {th }}$ - Low Rank Approximation

- Logistics:
- HF 6 and Project 2 pasted
due next Thursday and Friday
- Goals:
- Eckalt - Mirsky - Young
- Proof
- Generic significance for low rank approximation
- Ex:
- Genes Mirror Geography
- Looking ahead... (limitations and extensions)
- Numerics and Computations going forward
- Eckart-Mirsky-Young Tho:
- Thai. (Eckart-Minsky-Young) given A, $m \times n$ w/ SUD $A=U \& V^{*}$, and $\sigma_{i} \neq \sigma_{j}$ for i$\ddagger j$ then for $d \leqslant \operatorname{rank}(A)$:

$$
A^{(d)}=\sum_{j=1}^{d} \sigma_{j}\left(u_{j} v_{j}^{*}\right)
$$

is the unique minimizer of $\|A-B\|_{F_{10}}$ over all B rank-d.

- Moreover: $\left.\begin{array}{rl}\|A\|_{F_{10}}^{2} & =\sum_{j=1}^{\text {rank (A) }} \sigma_{j}^{2} \\ \left\|A^{(d)}\right\|_{F_{10}}^{2} & =\sum_{j=1}^{d} \sigma_{j}^{2}\end{array}\right\}\left\|A-A^{(d)}\right\|_{F_{10}}^{2}=\sum_{J=d+1}^{\operatorname{conk}(A)} \sigma_{j}^{2}$
so, relative error:

$$
\left\|A-A^{(d)}\right\|_{f F_{0}} /\|A\|_{f_{10}}=\sqrt{1-\left(\sum_{j=1}^{d} \sigma_{j}^{2}\right) /\left(\sum_{j=1}^{n o k(A)} \sigma_{j}^{2}\right)}
$$

. so, $A^{(d)} \approx A$ for $d \ll m, n$ if $\sigma(A)$ decay quickly post some small d

$$
\text { - numerical rank }=\text { smallest } d \text { sf }\left\|A^{(s)}-A\right\|_{f_{0} 0}\|A\|_{r_{10}} \leq \stackrel{\downarrow}{\varepsilon} \in[0,1]
$$

- Fact: many large matrices are numerically low rank... why? \longleftarrow (many large matrices are ill-conditioned)
(see Townsend \& Udell, Why are big data matrices low rank SIAM J. MATH. DATA SCIENCE, 2019)
nice application of Johnsen-Lindenstronss!
- so common often assumed w/out qualification
- extremely useful, implies:

$$
\begin{aligned}
& A^{(m a n)} \approx L^{(m \times d)} R^{(d a n)}
\end{aligned}
$$

for $r \ll \min (m, n)$. Allows:

- Compression: store awl $(m+n) d$ entries instead of mn
- Application: malliplyiny cost $\theta((m+n>d)$ instead of $\theta(m n)$
- Model redaction \$ low-dimensional embedding
- Let's prove Eckart - Mirsky - Young...
- given $A \in \mathbb{C}^{m \times n}$, wont $B \in \mathbb{C}^{m \times n}$ of rank $d \leq \operatorname{rank}(A)$
so write:

$$
\begin{aligned}
& B=L R^{*}=\sum_{k=1}^{d} \ell_{k} r_{k}^{*}
\end{aligned}
$$

wont $B \approx A$ so aim to minimize:

$$
\|A-B\|_{k_{10}}^{2}=\sum_{i, j=1}^{M, n}\left|a_{i j}-\sum_{k=1}^{d}\left[\ell_{k} r_{k}^{*}\right]_{j}^{2}\right|^{2}=\sum_{i, j=1}^{m}\left|a_{i j}-\sum_{k=1}^{d} \ell_{i k} \bar{j}_{j k}\right|^{2}
$$

- two approaches:

$$
\langle M, M\rangle=\sum_{i j} m_{i j} \cdot m_{i j}
$$

1. $\|\cdot\|_{F_{10}}$ is unitarily invariant since $\|M\|_{F_{10}}^{2}=\overbrace{\operatorname{trace}\left(M M^{*}\right)}^{\operatorname{rank}(M)} \sum_{j=1}^{2} \sigma_{J}(M)^{2}$ then $\left\|M Q^{*}\right\|_{F_{r o}}^{2}=\operatorname{trace}\left(M Q^{*} Q M^{k}\right)=\operatorname{tacec}\left(M M^{*}\right)=\|M\|_{\text {Foo }}^{2}$

So, given $A=U \varepsilon V^{*}$

$$
\begin{aligned}
& \text { given } A=U \varepsilon V^{*} \\
& \|A-B\|_{F_{10}}^{2}=\left\|U^{*}(A-B) V\right\|_{F_{10}}^{2}=\left\|\varepsilon-\left(U^{*} L\right)\left(V^{*} R\right)^{*}\right\|_{f_{10}}^{2}=\| \varepsilon-\overbrace{\tilde{L} \tilde{R}^{k} \|_{F_{10}}^{2}}^{\tilde{\theta}}
\end{aligned}
$$

where $\tilde{L}=U^{*} L \Leftrightarrow L=U \tilde{L}, \quad \tilde{R}=V^{*} R \Leftrightarrow R=V \tilde{R}$

- WLOG can assume $A \in \mathbb{R}^{+m / a}$ and diagonal...
- if A is real and diagonal, man w/ nonnegative entices
then

$$
A=\left[\begin{array}{c}
\\
\hdashline 0
\end{array}\right] \text { or }\left[\begin{array}{l}
0
\end{array}\right]
$$

in either case, only need to recover the nonzero block
$($ rank $(A) \times \operatorname{rank}(A))$ since any rows $=0$ con be recovered
by setting $\ell_{i k}=0 \quad \forall i$ st. row $i=0$
and any col's $=0 \ldots j_{j k}=0 \forall j$ st. col. $J=0$

- WLOG assume $\left.\begin{array}{rl}A & \text { is square } \$ \text { full rank } \\ \text { real, nonnegative diagonal }\end{array}\right\}$ this, square, Hermitian, positive definite
(the rest is 0 blocks and unitary transformations
by U and V)
- if A is symmetric then B best approximates A
B^{\top} best approximate A^{\top}
but $A^{\top}=A$
so $B^{\top}=B$ (if unique)
look for symmetric, real solis:

$$
L=R, \quad A \approx B=R R^{\top}
$$

$\tau_{\text {real since }} A$ real
so, WLOG solve for $R \in \mathbb{R}^{r \times d}$ minimizing: $\underbrace{\left\|A-R R^{\top}\right\|_{F F_{0}}^{2}}_{f(R)}=\left\langle A-R R^{\top}, A-R R^{\top}\right\rangle=\sum_{i, j}\left(a_{1,}-\sum_{k=1}^{d} r_{i k} j_{j}\right)^{2}=f(R)$

- reduced to a real, square, symmetric, p.d. problem...
- symmetrizing solves 2 problems...
(a) Scaling: let D be a diagonal dad, inedible matrix...
if $B=L R^{\top}$
then $B=L D D^{-1} R^{\top}$ so $(L D)$ and $\left(D^{-1} R^{\top}\right)$
are also son's $\forall D$
(sole columns l_{k} by $d_{k k}$ and t_{k} by $d_{k k}$)
- usually solve by either fixing $\left\|\ell_{k}\right\|=1,\| \|_{k} \|=1$
or (symectized) $\left\|\ell_{k}\right\|=\left\|r_{k}\right\|$.
(b) orthogonality: if $B=L R^{*}$
con orthogonolize w/ QR decamp

$$
\begin{aligned}
L & =\left[\begin{array}{lll}
1 & \text { basis for } L
\end{array}\right]\left[W / W / Q_{L} T_{L}\right. \\
\text { or } R & =Q_{R} T_{R}
\end{aligned}
$$

then:

$$
\begin{aligned}
& \text { or }
\end{aligned}
$$

WLOG could require 1 col's in L or $R \ldots$ which to enforce?
(once symmetrized weill have both sides $1 \ldots$)
2. solve directly by computing $\nabla_{R} f(R)$ and setting $\nabla_{R} f(R)=0$.

$$
\begin{aligned}
& f(R)=\left\|A-R R^{\top}\right\|_{F_{0_{0}}}^{2}=\sum_{i j}\left(a_{i j}-\left(R R^{\top}\right)_{i j}\right)^{2}=\left\langle A-R R^{\top}, A-R R^{\top}\right\rangle \leftarrow \text { matrix (elemeat-wise) } \\
& \partial_{r_{2 k}} f(R)=\partial_{l e k}\left\langle A-R R^{\top}, A-R R^{\top}\right\rangle=\left\langle-\partial_{l e k} R R^{\top}, A-R R^{\top}\right\rangle+\left\langle A-R R^{\top},-\partial_{l l k} R R^{\top}\right\rangle \\
& =-2\left\langle A-R R^{\top}, \partial_{l k} R R^{\top}\right\rangle \\
& =-2 \sum_{i, j}\left(o_{i j}-\left[R R^{\top}\right]_{i j}\right)\left(\partial_{r_{k}}\left[R R^{\top}\right]_{i j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { so } \quad \partial_{r_{l k}} f(R)=-2 \sum_{i, j=1}\left(A-R R^{\top}\right)_{i j}\left(r_{k} e_{l}^{\top}+e_{l} r_{k}^{\top}\right)_{i j} \\
\text { for } \nabla_{R} f(R)=0 \text { need } \quad \partial_{r_{l k}} f(R)=0 \forall l_{l} k
\end{array}\right\} \begin{array}{l}
\text { con solve one } k \\
\text { (col of } R \text { at a line })
\end{array}
\end{aligned}
$$

- So, to simplify, take greedy approach, solve one column of R at a time...

$$
\begin{aligned}
& \partial r_{l k} f(R)=-2 \sum_{i j}\left(A-R R_{i j}\right)_{j}\left(r_{k}^{\prime} e_{l}^{\top}+e_{l}^{i} l_{k}^{\top}\right)_{j j}=-2\left[\sum_{j j}\left(A-R R^{\top}\right)_{i j}\left(r_{k} e_{l}^{\top}\right)_{j j}+\sum_{i, j}\left(A-R R^{\top}\right)_{j j}\left(c_{l} r_{k}\right)_{j}^{\top}\right] \\
& =0 \text { unless } \quad=0 \text { estes }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(A-R R^{\top}\right)_{\ell_{i}} \text { by sanely } \\
& =-4 \sum_{\jmath}\left(A-R R^{\top}\right)_{l_{j}} \rho_{J k}=-4\left[\left(A-R R^{\top}\right) \dot{i}_{k}^{\prime}\right]_{\ell}
\end{aligned}
$$

so: $\nabla_{r_{k}} f(R)=-4\left(A-R R^{\top}\right) r_{k}^{\prime} \Rightarrow \nabla_{r_{k}} f(R)=0$ requires $A r_{k}=R R^{\top} r_{k}$ for all k
-if choose $R \quad{ }^{\prime} / \perp$ columns then: $R^{\top} r_{k}=\left[\begin{array}{c}r_{1}^{\top} r_{k} \\ r_{2}^{\top} k_{k} \\ \vdots \\ k_{k}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ r_{k} \|^{2}\end{array}\right]$ "generalized eigenvector problem"
So, solving for $R \mathrm{w} / \perp$ col's

$$
\text { so } \quad R R^{\top} r_{k}=R\left(\left\|r_{k}\right\|^{2} e_{k}\right)=\left\|r_{k}\right\|^{2} r_{k} \ldots
$$

that minimize $\left\|A \cdot R R^{\top}\right\|_{\text {Fro }}^{2}$ vie gradient descent produces power iteration w/ shift $\left\|\left\|_{k}^{(t)}{ }^{(k)}\right\|^{2}\right.$...
pones iteration $=$ grad. descent on low mat approx
then: $\nabla_{r_{k}} f(R)=0$ requires $A r_{k}=\left\|r_{k}\right\|^{2} r_{k} \ldots$ eigenvector problem! error!

- Conclusion: if A is real, symactic and $R \in \mathbb{R}^{\text {mod }} \mathrm{w} / \perp$ col's minimizes $f(R)=\frac{!}{4} \| A-R R^{{ }^{\top} \|_{F_{0}}^{2}}$
then each column r_{k} must be an eigenvector of A
where $A r_{k}=\lambda_{k} r_{k}$, and $w /$ mognilude $\left\|r_{k}\right\|^{2}=\lambda_{k}$
so, if $\left(v_{j}, \lambda_{j}\right)$ are the eigenpoiss of A (normalized)
then, for all k, \exists, sit.

$$
r_{k}=\sqrt{\lambda_{j}} v_{\jmath}
$$

- reduces the problem to assigning an eigen vector to each col of R...
- apparent that the best assignment is $r_{k}=\sqrt{\lambda_{k}} v_{k}$ where $\left|\lambda_{1}\right| \geq \lambda_{2} \mid \geq \ldots$
- if $A=V \Lambda V^{-1}=V \Lambda V^{\top}=\sum_{k=1}^{m(n k(A)} \lambda_{k}\left(v_{k} v_{k}^{\top}\right)$
then, assigning $r_{k}=\sqrt{\lambda_{k}} v_{k}$ gives $R R^{\top}=\sum_{k=1}^{d}\left(\sqrt{\lambda}_{k} v_{k}\right)\left(\sqrt{\lambda}_{k} v_{k}{ }^{r}\right)=\sum_{k=1}^{d} \lambda_{k}\left(v_{k} v_{k}{ }^{\top}\right)$
so $A-R R^{\top}=\sum_{k>d} \lambda_{k}\left(v_{k} v_{k}^{\prime}\right)$ and $\left\|A-R R^{\top}\right\|_{f_{1}}^{2}=\sum_{k>d}\left|\lambda_{k}\right|^{2}$
- to go back to generic $A \ldots \operatorname{rank}(A)=r$
solve for R from the upper res black of \mathcal{E}

then: $\tilde{L} \tilde{R}^{\top}$ is the best rank d approximation to \sum
- and multiply by unitary transforms (change basis for row and column space)

$$
\begin{aligned}
& \left.\begin{array}{l}
l_{k}=U \tilde{l}_{k}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
u_{1} & u_{2} & u_{k} & u_{m} \\
1 & 1 & 1 & 1
\end{array}\right] \sqrt{\sigma_{k}}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\vdots
\end{array}\right]=\sqrt{\sigma_{k}} u_{k} \\
r_{k}=V \tilde{r}_{k}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
v_{1} & v_{k} & 1 \\
1 & 1 & v_{1}
\end{array}\right] \sqrt{\sigma_{k}}\left[\begin{array}{l}
0 \\
\vdots \\
\vdots \\
0
\end{array}\right]=\sqrt{\sigma_{k}} v_{k}
\end{array}\right\} \quad L=\operatorname{dog}\left(\sigma_{1}, \ldots \sigma_{d}\right)^{1 / 2}\left[\begin{array}{cc}
1 & 1 \\
u_{1} & \ldots \\
1 & 1 \\
1 & 1
\end{array}\right] \\
& \text { so } B=L R^{*}=\left[\begin{array}{lll}
1 & 1 \\
u_{1} & u_{d} \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
\sigma_{c}^{c_{1}} & & \\
& \ddots & \\
& & \sigma_{d}
\end{array}\right]\left[\begin{array}{lll}
-v_{1}^{*} \\
v_{1}^{*}
\end{array}\right] \\
& =\sum_{k=1}^{d} \sigma_{k}\left(u_{k} v_{k}^{*}\right)=A^{(d)} \text {. }
\end{aligned}
$$

- Therefore, the best rank-d approximation to $A=A^{(d)}=\sum_{k=1}^{d} \sigma_{k}\left(x_{k} v_{k}{ }^{*}\right)$ and is unique if $\sigma_{1}>\sigma_{2}>\ldots$
- Consequence: given $A \in \mathbb{C}^{m \times n}, M \in \mathbb{C}^{d \times d}$ invertible then the low rank de comp problem: find L, R given a normalization and \perp constraint on one of the factors, $L \in \mathbb{C}^{m \times d}, R \in \mathbb{C}^{d \times n}$ minimizizing $\left\|A-L M R^{*}\right\|_{\text {for }}^{2}$
can always be solved by truncating the SVD of A and is unique if $\sigma_{\mathcal{J}}$ are distinct. Allow accurate approx for $d \ll m, n$ if A is numerically, low rank.
- Where we go next:
- Questions: (Evaluating PCA)

0 . why are many data matrices numerically low-rank?
\uparrow or, when...
(see Townsend \& Udell, Why are big data matrices low rank SIAM J. MATH. DATA SCIENCE, ZO19)
nice application of Johreen-Lindenstrouss!

1. Related Methods: Multi-Dimensional Scaling ... What if we preserve pairwise distances? angles?

Low Rank Matrix Completion... What if we are missing data?
2. does PCA extract interpretable featwes?
(see application example to game theory \& strategic analysis in Poker \rightarrow yes!
see "eigen faces" example \rightarrow no!
... discuss limits of Frobenius norm $\rightarrow L_{p}$ low rank approx
... lack of realistic constraints in feature vectors, allow allernating/recursive corrections working from overall average to details \rightarrow non-negative matrix factorization)
3. what if data is not concentrated on a low-d subspace?
can we use non-linear representations? how do we study topology of data?
(discuss intrinsic vs. extrinsic geometry, PCA depends on
extrinsic geometry \rightarrow diffusion maps, special graph embedding, topological data analysis.)

